
CSE 331 Summer 2022

Software Design & Implementation

Topic: Exceptions and Assertions

CSE 331

💬 Discussion: How many lemons could you fit into a bus?

CSE 331 Summer 2022

Reminders

• Some office hour changes on the calendar

• Prep. Quiz: HW5 due Monday (7/18)

• HW5 due Thursday (7/21)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Equality
• Overriding vs. Overloading
• Hashcodes

• Some more Equality
• Bugs vs. Errors
• Assertions and checkRep
• Exceptions

CSE 331 Summer 2022

equals specification

public boolean equals(Object obj) should be:

• reflexive: for any reference value x, x.equals(x) == true

• symmetric: for any reference values x and y, x.equals(y) == y.equals(x)

• transitive: for any reference values x, y, and z, if x.equals(y) and y.equals(z)
are true, then x.equals(z) is true

• consistent: for any reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false (provided neither is
mutated)

• For any non-null reference value x, x.equals(null) should return false

CSE 331 Summer 2022

An example

A class where we may want equals to mean equal contents

public class Duration {

// RI: min >= 0 && 0 <= sec < 60

private final int min, sec;

public Duration(int min, int sec) {

assert min >= 0 && sec >= 0 && sec < 60;

this.min = min;

this.sec = sec;

}

}

CSE 331 Summer 2022

Satisfies the contract

public class Duration {

@Override

public boolean equals(Object o) {

if (!(o instanceof Duration))

return false;

Duration d = (Duration) o;

return this.min == d.min && this.sec == d.sec;

}

}

Since we satisfy the contract, we are done! Right?

CSE 331 Summer 2022

Equality with Inheritance

A class where we may want equals to mean equal contents

public class NanoDuration extends Duration {

private final int min, sec, nanos;

public NanoDuration(int min, int sec, int nanos) { ... }

@Override

public boolean equals(Object o) {

if (!(o instanceof NanoDuration))

return false;

NanoDuration nd = (NanoDuration) o;

return super.equals(nd) && this.nanos == nd.nanos;

}

}

CSE 331 Summer 2022

We can break the contract

Consider the following code snippet:

Duration d1 = new NanoDuration(1, 1, 500);

Duration d2 = new Duration(1, 1);

d1.equals(d2);

d2.equals(d1);

What property in the contract do we accidentally break?

// false [NanoDuration.equals]

// true [Duration.equals]

Symmetricness

CSE 331 Summer 2022

Outline

• Terminology: errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

CSE 331 Summer 2022

Not all “errors” should be failures

Some “error” cases:

1. Misuse of your code

– e.g., precondition violation

– should be a failure (i.e., made visible to the user)

2. Errors in your code vs reasoning

– e.g., representation invariant fails to hold
– should be a failure

3. Unexpected resource problems

– e.g., missing file, server offline, …
– not an error in the sense above (... these are not bugs)
– should not be a failure (i.e., do try to recover)

CSE 331 Summer 2022

What to do when failing

Fail fast and fail friendly

Goal 1: Prevent harm

– stop before anything worse happens

– (do still need to perform cleanup: close open resources etc.)

Goal 2: Give information about the problem

– failing quickly helps localize the defect

– a good error message is important for debugging

CSE 331 Summer 2022

Errors that should be failures

A precondition prohibits misuse of your code

– weakens the spec by throwing out unhandled cases

This ducks the problem of errors-will-happen

– with enough clients, someone will use your code incorrectly

Practice defensive programming:

– usually makes sense to check for these errors

– even though you don’t specify what the behavior will be,
it still makes sense to fail fast

CSE 331 Summer 2022

Outline

• Terminology: errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

CSE 331 Summer 2022

Defensive programming

Assertions about your code:

– precondition, postcondition, representation invariant, etc.

Check these statically via reasoning and tools

Check these dynamically via assertions

assert index >= 0;

assert items != null : "null item list argument"

assert size % 2 == 0 : "Bad size for " + toString();

– throws AssertionError if condition is false

– includes descriptive messages

CSE 331 Summer 2022

Enabling assertions

In Java, assertions can be enabled or disabled at runtime

(no recompile is required)

Command line:

java –ea runs code with assertions enabled

java runs code with assertions disabled (default)

Eclipse:

Select Run > Run Configurations… then add -ea to VM arguments under
(x)=arguments tab

Turn them off only in rare circumstances

(e.g., production code running on a client machine)

CSE 331 Summer 2022

How not to use assertions

Don’t clutter the code with useless assertions

x = y + 1;

assert x == y + 1; // the compiler worked!

• Too many assertions can make the code hard to read

• Be judicious about where you include them. Good choices:

– preconditions & postconditions

– invariants of non-trivial loops

– representation invariants after mutations

CSE 331 Summer 2022

How not to use assertions

Don’t perform side effects:

assert list.remove(x); // won’t happen if disabled

// better:

boolean found = list.remove(x);

assert found;

CSE 331 Summer 2022

assert and checkRep()

CSE 331’s checkRep() is another dynamic check

Strategy: use assert in checkRep() to test and fail with meaningful
message if trouble found

– CSE 331 tests will check that assertions are enabled

Easy to forget to enable them in your own projects

– Google didn’t use them for this reason

CSE 331 Summer 2022

Expensive checkRep()tests

Detailed checks can be too slow in production

– especially if asymptotically slower than code being checked

But complex tests can be very helpful during testing & debugging (let the computer
find problems for you!)

Suggested strategy for checkRep:

– create a static, global “debug” or “debugLevel” variable

– run expensive tests when this is enabled

– turn it on during unit tests

• can use JUnit’s @Before for this

CSE 331 Summer 2022

Square root

// requires: x >= 0

// returns: approximation to square root of x

public double sqrt(double x) {

...

}

CSE 331 Summer 2022

Square root with assertion

// requires: x >= 0

// returns: approximation to square root of x

public double sqrt(double x) {

assert x >= 0.0;

double result;

… compute result …

assert Math.abs(result*result – x) < .0001;

return result;

}

These two assertions serve different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in this lecture as examples.)

CSE 331 Summer 2022

Outline

• Terminology: errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

CSE 331 Summer 2022

Java’s checked/unchecked distinction

Checked exceptions (style: for special cases / abnormal cases)

– callee must declare in signature (else type error)

– client must either catch or declare (else type error)

• even if you can prove it will never happen at run time, the type
system does not “believe you”

– guaranteed to be a matching enclosing catch at runtime

Unchecked exceptions (style: for never-expected)

– library has no need to declare

– client has no need to catch

– these are subclasses of:

• RuntimeException

• Error (rarely caught)

Throwable

Runtime

Exception

ErrorException

Checked

exceptions

CSE 331 Summer 2022

(Abridged) Exception Hierarchy

CSE 331 Summer 2022

Square root, specified for all inputs

// throws: NegativeArgumentException if x < 0

// returns: approximation to square root of x

public double sqrt(double x)throws NegativeArgumentException {

if (x < 0)

throw new NegativeArgumentException();

…

}

• throws is part of a method signature: “it might happen”

– comma-separated list

– like @modifies, promises are in what is not listed

• throw is a statement that actually causes exception-throw

– immediate control transfer [like return but different]

CSE 331 Summer 2022

Using try-catch to handle exceptions

public double sqrt(double x)

throws NegativeArgumentException

…

Client code:

try {

y = sqrt(…);

... other statements ...

} catch (NegativeArgumentException e) {

e.printStackTrace(); // or other actions

}

• Handled by nearest dynamically enclosing try/catch

– top-level default handler: print stack trace & crash

CSE 331 Summer 2022

Code Paths with Exceptions

Three potential paths through the code below:

try {

y = foo(…);

… more code …

} catch (Type name) {

… code to handle the exception …

}

1. sqrt returns normally

2. sqrt throws an exception caught by this catch

3. sqrt throws an exception not caught here

CSE 331 Summer 2022

Throwing and catching

• Executing program has a stack of currently
executing methods

– dynamic: reflects runtime order of method
calls

– no relation to static nesting of classes,
packages, etc.

• When an exception is thrown, control transfers
to nearest method with a matching catch block

– if none found, top-level handler used

• Exceptions allow non-local error handling

– a method many levels up the stack can
handle a deep error

CSE 331 Summer 2022

Catching with inheritance

try {

code…
} catch (FileNotFoundException fnfe) {

code to handle a file not found exception
} catch (IOException ioe) {

code to handle any other I/O exception
} catch (Exception e) {

code to handle any other exception
}

• A SocketException would match the second block

• An ArithmeticException would match the third block

• (Subsequent catch blocks need not be supertypes like this)

CSE 331 Summer 2022

The finally block

finally block is always executed

– whether an exception is thrown or not

try {

y = foo(…);

… more code …

} catch (Type name) {

… code to handle the exception …

} finally {

… code to run after the try or catch finishes

}

CSE 331 Summer 2022

What finally is for

finally is used for common “must-always-run” or “clean-up” code

– avoids duplicated code in catch branch[es] and after

– avoids having to catch all exceptions

try {

// ... write to out; might throw exception

} catch (IOException e) {

System.out.println("Caught IOException: "

+ e.getMessage());

} finally {

out.close();

}

CSE 331 Summer 2022

Outline

• Terminology: errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

CSE 331 Summer 2022

Two distinct uses of exceptions

• Errors that should be failures

– unexpected (ideally, should not happen at all)

– should be rare with high quality client and library

– can be the client’s fault or the library’s

– often unrecoverable

• Special cases (a.k.a. exceptional cases)

– expected, just not the common case

– possibly unpredictable or unpreventable by client

CSE 331 Summer 2022

Handling exceptions

• Errors that should be failures

– usually can’t recover

– unchecked exceptions the better choice (avoids much work)

– if condition not checked, exception propagates up the stack

• top-level handler prints the stack trace

• Special cases

– take special action and continue computing

– should always check for this condition

– should handle locally by code that knows how to continue

– checked exceptions the better choice

CSE 331 Summer 2022

Checked vs. unchecked

• No perfect answer to the question “should clients be forced to catch (or
declare they throw) this exception?”

– Java provided both options

• Advantages to checked exceptions:

– Static checking of callee: only declared exceptions are thrown

– Static checking of caller: exception is caught or declared

• Disadvantages:

– impedes implementations and overrides (can’t add exceptions)
• prevents truly giving no promises when @requires is false

– often in your way when prototyping

– have to catch or declare even if the exception is not possible

CSE 331 Summer 2022

Propagating an exception

// returns: x such that ax^2 + bx + c = 0

// throws: NegativeArgumentException if no real soln exists

double solveQuad(double a, double b, double c)

throws NegativeArgumentException {

// No need to catch exception thrown by sqrt

return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

Aside: does “negative argument” make sense to the caller?

CSE 331 Summer 2022

Why catch exceptions locally?

Problems:

1. Failure to catch exceptions often violates modularity

– call chain: A -> IntSet.insert -> IntList.insert

– IntList.insert throws some exception

• implementer of IntSet.insert knows how list is being used

• implementer of A may not even know that IntList exists

2. Possible that a method on the stack may think that it is handling an exception
raised by a different call

Alternative: catch it and throw again

– “chaining” or “translation”

– do this even if the exception is better handled up a level

– makes it clear to reader of code that it was not an omission

CSE 331 Summer 2022

Exception translation

// returns: x such that ax^2 + bx + c = 0

// throws: NotRealException if no real solution exists

double solveQuad(double a, double b, double c)

throws NotRealException {

try {

return (-b + sqrt(b*b - 4*a*c)) / (2*a);

} catch (NegativeArgumentException e) {

throw new NotRealException(); // “chaining”

}

}

class NotRealException extends Exception {

NotRealException() { super(); }

NotRealException(String message) { super(message); }

NotRealException(Throwable cause) { super(cause); }

NotRealException(String msg, Throwable c) { super(msg, c); }

}

CSE 331 Summer 2022

Don’t ignore exceptions

Effective Java Tip: Don't ignore exceptions

Empty catch block is poor style

try {

readFile(filename);

} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened

– and exit if that’s appropriate for the application

} catch (IOException e) {

e.printStackTrace();

System.exit(1);

}

sometimes okay inside of

an exception handler

CSE 331 Summer 2022

Outline

• Terminology: errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how in Java
– how to throw, catch, and declare exceptions
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

CSE 331 Summer 2022

Informing the client of a problem

Special value:

– null for Map.get

– -1 for indexOf

– NaN for sqrt of negative number

Advantages:

– can be less verbose than try/catch machinery

Disadvantages:

– error-prone: callers forget to check, forget spec, etc.

– need “extra” result: doesn’t work if every result could be real

• example: if a map could store null keys

– has to be propagated manually one call at a time

General Java style advice: exceptions for exceptional conditions

CSE 331 Summer 2022

Exceptions: review

Use an assertion for internal consistency checks that should not fail

– when checking at runtime is possible

Use only a precondition when

– used in a context in which calls can be checked via reasoning

– but checking at runtime would be prohibitive

• e.g., requiring that a list be sorted

Use an exception when

– used in a dynamic / unpredictable context (client can’t predict)

– for exceptional cases only

Use a special value when

– it is a common case (not really exceptional)

– clients are likely (?) to remember to check for it

CSE 331 Summer 2022

Before next class...

1. Finish Prep. Quiz: HW5

– Review of many of the concepts we’ve seen this quarter

– A bit longer than what we normally give you

2. Start on HW5

– Unique experience to design an ADT yourself

– Focuses on testing and specifications

