
CSE 331 Summer 2022

Software Design & Implementation

Topic: Rep. Exposure; Abstraction Functions

CSE 331

💬 Discussion: How was your long weekend?

CSE 331 Summer 2022

Reminders

• Make sure to check Gitlab when submitting
– must commit, tag, and pass the Gitlab pipeline

• Uploaded replacement recording for Specifications

• HW3 due Thursday (7/7)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Abstract Data Types
• ADTs in Java

• overview
• abstract state
• creators
• observers
• producers
• mutators

• Representation Invariants

• Representation Exposure
• Abstraction Functions
• Intro to Testing

CSE 331 Summer 2022

Abstract Data Type (ADT)

ADT abstracts from the organization to meaning of data

– details of data structures are hidden from the client

– client see only the operations that provided

Choose a representation so that:

– it is possible to implement required operations

– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later

• almost always better to start simple

Then use reasoning to verify the operations are correct

– two intellectual tools are helpful for this...

CSE 331 Summer 2022

Data abstraction outline

Abstract
States

Fields in our
Java class

Abstraction Barrier

Abstraction function (AF):
Relationship between ADT

specification and
implementation

Representation invariant (RI):
Relationship among

implementation fields

ADT specification ADT implementation

CSE 331 Summer 2022

Connecting implementations to specs

For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean

– defines the set of valid concrete values

– must hold before and after any public method is called

– no object should ever violate the rep invariant

• such an object has no useful meaning

Abstraction Function: maps Object → abstract state

– we’ll discuss this later!

CSE 331 Summer 2022

Example: Circle 2

/** Represents a mutable circle in the plane. For example,

* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and edge != null

// and !center.equals(edge)

private Point center, edge;

// Abstraction function:

// AF(this) = a circle with center at this.center

// and radius this.center.distanceTo(this.edge)

// ...

}

CSE 331 Summer 2022

Example: Polynomial 2

/** An immutable polynomial with integer coefficients.

* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: terms != null and

// no two terms have the same degree and

// terms is sorted in descending order by degree

private final LinkedList<IntTerm> terms;

// Abstraction function:

// AF(this) = sum of monomials in this.terms

// ... coeff, degree, etc.

CSE 331 Summer 2022

Defensive Programming with ADTs

CSE 331 Summer 2022

Checking rep invariants

Remember that representation invariants should hold before and after each method
in the public specification.

Should you write code to check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off

• better argument is removing clutter (improve understandability)

A great debugging technique:

Catch bugs by implementing and using a function to check the rep-invariant

CSE 331 Summer 2022

Example: CharSet ADT

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet

public CharSet() {…}

// @modifies: this

// @effects: this changed to this + {c}

public void insert(Character c) {…}

// @modifies: this

// @effects: this changed to this - {c}

public void delete(Character c) {…}

// @return: true iff c is in this set

public boolean member(Character c) {…}

// @return: cardinality of this set

public int size() {…}

CSE 331 Summer 2022

Example: CharSet ADT

// Rep invariant: elts != null and

// elts has no nulls and no dups

// AF(this) = list of chars in elts

private List<Character> elts;

CSE 331 Summer 2022

Checking the rep invariant

How do we check whether this invariant holds?

public void delete(Character c) {

elts.remove(c); // removes 0 or 1 copies of c

}

CSE 331 Summer 2022

Checking the rep invariant

Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {

checkRep();

elts.remove(c); // removes 0 or 1 copies of c

checkRep();

}

// Verify that elts contains no nulls or dups

private void checkRep() {

assert elts != null;

for (int i = 0; i < elts.size(); i++) {

assert elts.get(i) != null;

assert elts.indexOf(elts.get(i)) == i;

}

}

CSE 331 Summer 2022

Practice defensive programming

• Question is not: will you make mistakes? You will.

• Question is: will you catch those mistakes before users do?

• Write and incorporate code designed to catch the errors you make

– check rep invariant on entry and exit (of mutators)

– check preconditions (don’t trust other programmers)

– check postconditions (don’t trust yourself either)

• Checking the rep invariant helps discover errors while testing

• Reasoning about the rep invariant helps discover errors while coding

CSE 331 Summer 2022

Practice defensive programming

• Checking pre- and post-conditions and rep invariants is one tip

• More of these in Effective Java

– first required reading (see calendar for items)

• Focus on defensive programming against subtle bugs

– obvious bugs (e.g., crashing every time) will be caught in testing

– subtle bugs that only occasionally cause problems can sneak out

– be especially defensive against (and scared of) these

CSE 331 Summer 2022

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this

public List<Character> getElts();

Consider this implementation:

public List<Character> getElts() { return elts; }

Does this implementation preserve the rep invariant?

Can’t say!

CSE 331 Summer 2022

Representation exposure

Consider this client code (outside the CharSet implementation):

CharSet s = new CharSet();

Character a = new Character(’a’);

s.insert(a);

s.getElts().add(a);

s.delete(a);

if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always bad

– can cause bugs that will be very hard to detect

• Rule #1: Don’t do it!

• Rule #2: If you do it, document it clearly and then feel guilty about it!

CSE 331 Summer 2022

Avoiding representation exposure

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs

– absolutely must avoid in libraries with many clients

– can allow (but feel guilty) for code with few clients

• Test for it with adversarial clients:

– pass values to methods and then mutate them

– mutate values returned from methods

CSE 331 Summer 2022

private is not enough

• Making fields private does not suffice to prevent rep exposure

– see our example

– issue is aliasing of mutable data outside the abstraction

• So private is a hint to you: no aliases outside abstraction to references
to mutable data reachable from private fields

• Three general ways to avoid representation exposure…

CSE 331 Summer 2022

Avoiding rep exposure (way #1)

• One way to avoid rep exposure is to make copies of all data that cross the
abstraction barrier

– Copy in [parameters that become part of the implementation]

– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;

public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);

this.e = new Point(e.x,e.y);

}

public Point getStart() {

return new Point(this.s.x,this.s.y);

}

…

CSE 331 Summer 2022

Avoiding rep exposure (way #2)

• One way to avoid rep exposure is to exploit the immutability of (other) ADTs the
implementation uses

– aliasing is no problem if nobody can change data

• have to mutate the rep to break the rep invariant

• Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;

public Line(Point s, Point e) {

this.s = s;

this.e = e;

}

public Point getStart() {

return this.s;

}

…

CSE 331 Summer 2022

Alternative #3

// returns: elts currently in the set

public List<Character> getElts() { // version 1

return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2

return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList:

Returns an unmodifiable view of the specified list. This method allows modules to
provide users with "read-only" access to internal lists. Query operations on the returned
list "read through" to the specified list, and attempts to modify the returned list… result
in an UnsupportedOperationException.

CSE 331 Summer 2022

The good news

public List<Character> getElts() { // version 2

return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep

• cannot break the rep invariant

– (For long lists,) more efficient than copy out

– Uses standard libraries

CSE 331 Summer 2022

The bad news

public List<Character> getElts() { // version 1

return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2

return Collections.unmodifiableList(elts);

}

The two implementations do not do the same thing!

– both avoid allowing clients to break the rep invariant

– both return a list containing the elements

But consider: xs = s.getElts();

s.insert('a');

xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior

CSE 331 Summer 2022

Different specifications

Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set at the time of the call”

vs.

“returns read-only access to a list that the ADT continues to update to hold the current
elements in the set”

A third spec weaker than both [but less simple and useful!]

“returns a list containing the current set elements. Behavior is unspecified (!) if client
attempts to mutate the list or to access the list after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder

– only “simple” to implement with rep as a List

CSE 331 Summer 2022

Suggestions

Best options for implementing getElts()

• if O(n) time is acceptable for relevant use cases, copy the list

– safest option

– best option for changeability

• if O(1) time is required, then return an unmodifiable list

– prevents breaking rep invariant

– clearly document that behavior is unspecified after mutation

– ideally, write your own unmodifiable view of the list
that throws an exception on all operations after mutation

• if O(1) time is required and there is no unmodifiable version and you don’t have
time to write one, expose rep and feel guilty

CSE 331 Summer 2022

Abstraction Functions

CSE 331 Summer 2022

Specifying an ADT

Different types of operations:

1. creators

2. observers

3. producers

4. mutators (if mutable)

Described in terms of how they change the abstract state

– abstract description of what the object means

– difficult (unless concept is already familiar) but vital

– specs have no information about concrete representation

• leaves us free to change those in the future

CSE 331 Summer 2022

Connecting implementations to specs

For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean

– we saw this earlier!

Abstraction Function: maps Object → abstract state

– says what the data structure means in vocabulary of the ADT

– maps the fields to the abstract state they represent

• can check that the abstract value after each method meets the
postcondition described in the specification

CSE 331 Summer 2022

Example: Circle

/** Represents a mutable circle in the plane. For example,

* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and rad > 0

private Point center;

private double rad;

// Abstraction function:

// AF(this) = a circle with center at this.center

// and radius this.rad

// ...

}

CSE 331 Summer 2022

Example: Circle 2

/** Represents a mutable circle in the plane. For example,

* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and edge != null

// and !center.equals(edge)

private Point center, edge;

// Abstraction function:

// AF(this) = a circle with center at this.center

// and radius this.center.distanceTo(this.edge)

// ...

}

CSE 331 Summer 2022

Example: Polynomial

/** An immutable polynomial with integer coefficients.

* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: coeffs != null

private final int[] coeffs;

// Abstraction function:

// AF(this) = sum of this.coeffs[i] * x^i

// for i = 0 .. this.coeffs.length

// ... coeff, degree, etc.

CSE 331 Summer 2022

Example: Polynomial 2

/** An immutable polynomial with integer coefficients.

* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: terms != null and

// no two terms have the same degree and

// terms is sorted in descending order by degree

private final LinkedList<IntTerm> terms;

// Abstraction function:

// AF(this) = sum of monomials in this.terms

// ... coeff, degree, etc.

CSE 331 Summer 2022

The abstraction function

• Purely conceptual (not a Java function)

• Allows us to check correctness

– use reasoning to show that the method leaves the abstract state

such that it satisfies the postcondition

CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

addLast / removeLast

0 1 2 …

addFront / removeFront

0 1 2 …

CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

addLast

removeFront

CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

addLast + removeFront

addLast + removeFront

addLast + removeFront

CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

start start+len

start

= (start+len) mod vals.length

vals

vals

?

= start + len – vals.length

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// AF(this) =

// vals[start..start+len-1] if start+len <= vals.length

// vals[start..] + vals[0..?] otherwise

private int[] vals;

private int start, len;

// Creates an empty list.

public IntDeque() {

vals = new int[3];

start = len = 0;

}
AF(this) = vals[0..-1] = []

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// AF(this) =

// vals[start..start+len-1] if start+len <= vals.length

// vals[start..] + vals[0..?] otherwise

private int[] vals;

private int start, len;

// ...

// @returns length of the list

public int getLength() {

return len;

}

CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

start start+len

startk

#items = len

#items = vals.length – (start – k) (= len?)

vals.length

holds iff k = start + len – vals.length

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// AF(this) =

// vals[start..start+len-1] if start+len <= vals.length

// vals[start..] + vals[0..k] otherwise

private int[] vals;

private int start, len;

// ...

// @returns length of the list

public int getLength() {

return len;

}

1 line of code

but 2 cases for reasoning

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires 0 <= i < length

// @returns this[i]

public int get(int i) { ... }

start start+len

startstart + len – vals.length vals.length

vals.length

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires 0 <= i < length

// @returns this[i]

public int get(int i) {

if (start + len <= vals.length) {

return vals[start + i];

} else {

return vals[(start + i) % vals.length];

}

}

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires 0 <= i < length

// @returns this[i]

public int get(int i) {

return vals[(start + i) % vals.length];

}

CSE 331 Summer 2022

Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

// @returns value at the front of the list

public int removeFront() { ... }

CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

start start+len

removeFront

startstart+len–vals.length vals.length

CSE 331 Summer 2022

Example: IntDeque

// AF(this) =

// vals[start..start+len-1] if start+len <= vals.length

// vals[start..] + vals[0..k] otherwise

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

public void removeFront() {

if (start + 1 < vals.length) {

start += 1;

} else {

start = 0;

}

len -= 1;

}

CSE 331 Summer 2022

Example: IntDeque

// AF(this) =

// vals[start..start+len-1] if start+len <= vals.length

// vals[start..] + vals[0..k] otherwise

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

public void removeFront() {

start = (start + 1) % vals.length;

len -= 1;

}

CSE 331 Summer 2022

Example: IntDeque

// AF(this) =

// vals[start..start+len-1] if start+len <= vals.length

// vals[start..] + vals[0..k] otherwise

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

// @returns value at the front of the list

public int removeFront() {

int val = get(0);

start = (start + 1) % vals.length;

len -= 1;

return val;

}

CSE 331 Summer 2022

Before next class...

1. Start on Prep. Quiz: HW4 as early as possible!

– Reminds you about common set operations

• E.g. union, intersection, complement

– Think about some non-trivial cases needed for the homework

2. Section tomorrow will focus on HW4 preparation.

CSE 331 Summer 2022

Extra: Abstract Interpretation

• Abstraction functions are good for much more (e.g. program analysis)

53

CSE 331 Summer 2022

Extra: Testing

• What is testing? What makes something a good test case?

54

