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Software Design & Implementation

Topic: Rep. Exposure; Abstraction Functions

CSE 331

💬 Discussion: How was your long weekend?
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Reminders

• Make sure to check Gitlab when submitting
– must commit, tag, and pass the Gitlab pipeline

• Uploaded replacement recording for Specifications

• HW3 due Thursday (7/7)

Upcoming Deadlines



Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Abstract Data Types
• ADTs in Java

• overview
• abstract state
• creators
• observers
• producers
• mutators

• Representation Invariants

• Representation Exposure
• Abstraction Functions
• Intro to Testing
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Abstract Data Type (ADT)

ADT abstracts from the organization to meaning of data

– details of data structures are hidden from the client

– client see only the operations that provided

Choose a representation so that:

– it is possible to implement required operations

– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later

• almost always better to start simple

Then use reasoning to verify the operations are correct

– two intellectual tools are helpful for this...
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Data abstraction outline

Abstract
States

Fields in our
Java class

Abstraction Barrier

Abstraction function (AF):
Relationship between ADT 

specification and 
implementation

Representation invariant (RI):
Relationship among 

implementation fields

ADT specification ADT implementation
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Connecting implementations to specs

For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean

– defines the set of valid concrete values

– must hold before and after any public method is called

– no object should ever violate the rep invariant 

• such an object has no useful meaning

Abstraction Function: maps Object → abstract state

– we’ll discuss this later!
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Example: Circle 2

/** Represents a mutable circle in the plane. For example,

* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and edge != null

//   and !center.equals(edge)

private Point center, edge;

// Abstraction function:

// AF(this) = a circle with center at this.center

//   and radius this.center.distanceTo(this.edge)

//  ...

}
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Example: Polynomial 2

/** An immutable polynomial with integer coefficients.

* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: terms != null and

//     no two terms have the same degree and

//     terms is sorted in descending order by degree

private final LinkedList<IntTerm> terms;

// Abstraction function:

// AF(this) = sum of monomials in this.terms

//  ... coeff, degree, etc.
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Defensive Programming with ADTs
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Checking rep invariants

Remember that representation invariants should hold before and after each method 
in the public specification. 

Should you write code to check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off

• better argument is removing clutter (improve understandability)

A great debugging technique:

Catch bugs by implementing and using a function to check the rep-invariant
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Example: CharSet ADT

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet

public CharSet() {…}

// @modifies: this

// @effects: this changed to this + {c}

public void insert(Character c) {…}

// @modifies: this

// @effects: this changed to this - {c}

public void delete(Character c) {…}

// @return: true iff c is in this set

public boolean member(Character c) {…}

// @return: cardinality of this set

public int size() {…}
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Example: CharSet ADT

// Rep invariant: elts != null and

//       elts has no nulls and no dups

// AF(this) = list of chars in elts

private List<Character> elts;
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Checking the rep invariant

How do we check whether this invariant holds?

public void delete(Character c) {

elts.remove(c);  // removes 0 or 1 copies of c

}
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Checking the rep invariant

Rule of thumb:  check on entry and on exit (why?)

public void delete(Character c) {

checkRep();

elts.remove(c);  // removes 0 or 1 copies of c

checkRep();

}

// Verify that elts contains no nulls or dups

private void checkRep() {

assert elts != null;

for (int i = 0; i < elts.size(); i++) {

assert elts.get(i) != null;

assert elts.indexOf(elts.get(i)) == i;

}

}
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Practice defensive programming

• Question is not: will you make mistakes? You will.

• Question is: will you catch those mistakes before users do?

• Write and incorporate code designed to catch the errors you make

– check rep invariant on entry and exit (of mutators)

– check preconditions (don’t trust other programmers)

– check postconditions (don’t trust yourself either)

• Checking the rep invariant helps discover errors while testing

• Reasoning about the rep invariant helps discover errors while coding
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Practice defensive programming

• Checking pre- and post-conditions and rep invariants is one tip

• More of these in Effective Java

– first required reading (see calendar for items)

• Focus on defensive programming against subtle bugs

– obvious bugs (e.g., crashing every time) will be caught in testing

– subtle bugs that only occasionally cause problems can sneak out

– be especially defensive against (and scared of) these
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Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this 

public List<Character> getElts();

Consider this implementation:

public List<Character> getElts() { return elts; }

Does this implementation preserve the rep invariant?

Can’t say!
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Representation exposure

Consider this client code (outside the CharSet implementation):

CharSet s = new CharSet();

Character a = new Character(’a’);

s.insert(a);

s.getElts().add(a);

s.delete(a);

if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always bad

– can cause bugs that will be very hard to detect

• Rule #1: Don’t do it!

• Rule #2: If you do it, document it clearly and then feel guilty about it! 



CSE 331 Summer 2022

Avoiding representation exposure

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs

– absolutely must avoid in libraries with many clients

– can allow (but feel guilty) for code with few clients

• Test for it with adversarial clients:

– pass values to methods and then mutate them

– mutate values returned from methods
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private is not enough

• Making fields private does not suffice to prevent rep exposure

– see our example

– issue is aliasing of mutable data outside the abstraction

• So private is a hint to you: no aliases outside abstraction to references 
to mutable data reachable from private fields

• Three general ways to avoid representation exposure…
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Avoiding rep exposure (way #1)

• One way to avoid rep exposure is to make copies of all data that cross the 
abstraction barrier

– Copy in [parameters that become part of the implementation]

– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;

public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);

this.e = new Point(e.x,e.y);

}

public Point getStart() {

return new Point(this.s.x,this.s.y);

}

…
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Avoiding rep exposure (way #2)

• One way to avoid rep exposure is to exploit the immutability of (other) ADTs the 
implementation uses

– aliasing is no problem if nobody can change data

• have to mutate the rep to break the rep invariant

• Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;

public Line(Point s, Point e) {

this.s = s;

this.e = e;

}

public Point getStart() {

return this.s;

}

…
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Alternative #3

// returns: elts currently in the set

public List<Character> getElts() { // version 1

return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2

return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList: 

Returns an unmodifiable view of the specified list. This method allows modules to 
provide users with "read-only" access to internal lists. Query operations on the returned 
list "read through" to the specified list, and attempts to modify the returned list… result 
in an UnsupportedOperationException.
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The good news

public List<Character> getElts() { // version 2

return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep

• cannot break the rep invariant

– (For long lists,) more efficient than copy out

– Uses standard libraries
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The bad news

public List<Character> getElts() { // version 1

return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2

return Collections.unmodifiableList(elts);

}

The two implementations do not do the same thing!

– both avoid allowing clients to break the rep invariant

– both return a list containing the elements

But consider:     xs = s.getElts(); 

s.insert('a'); 

xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
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Different specifications

Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set at the time of the call”

vs.

“returns read-only access to a list that the ADT continues to update to hold the current 
elements in the set”

A third spec weaker than both [but less simple and useful!]

“returns a list containing the current set elements.  Behavior is unspecified (!) if client 
attempts to mutate the list or to access the list after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder

– only “simple” to implement with rep as a List
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Suggestions

Best options for implementing getElts()

• if O(n) time is acceptable for relevant use cases, copy the list

– safest option

– best option for changeability

• if O(1) time is required, then return an unmodifiable list

– prevents breaking rep invariant

– clearly document that behavior is unspecified after mutation

– ideally, write your own unmodifiable view of the list
that throws an exception on all operations after mutation

• if O(1) time is required and there is no unmodifiable version and you don’t have 
time to write one, expose rep and feel guilty
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Abstraction Functions
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Specifying an ADT

Different types of operations:

1. creators

2. observers

3. producers

4. mutators (if mutable)

Described in terms of how they change the abstract state

– abstract description of what the object means

– difficult (unless concept is already familiar) but vital

– specs have no information about concrete representation

• leaves us free to change those in the future
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Connecting implementations to specs

For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean

– we saw this earlier!

Abstraction Function: maps Object → abstract state

– says what the data structure means in vocabulary of the ADT

– maps the fields to the abstract state they represent

• can check that the abstract value after each method meets the 
postcondition described in the specification
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Example: Circle

/** Represents a mutable circle in the plane. For example,

* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and rad > 0

private Point center;

private double rad;

// Abstraction function:

// AF(this) = a circle with center at this.center

//   and radius this.rad

//  ...

}
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Example: Circle 2

/** Represents a mutable circle in the plane. For example,

* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and edge != null

//   and !center.equals(edge)

private Point center, edge;

// Abstraction function:

// AF(this) = a circle with center at this.center

//   and radius this.center.distanceTo(this.edge)

//  ...

}
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Example: Polynomial

/** An immutable polynomial with integer coefficients.

* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: coeffs != null

private final int[] coeffs;

// Abstraction function:

// AF(this) = sum of this.coeffs[i] * x^i

//   for i = 0 .. this.coeffs.length

// ... coeff, degree, etc.
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Example: Polynomial 2

/** An immutable polynomial with integer coefficients.

* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: terms != null and

//     no two terms have the same degree and

//     terms is sorted in descending order by degree

private final LinkedList<IntTerm> terms;

// Abstraction function:

// AF(this) = sum of monomials in this.terms

//  ... coeff, degree, etc.
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The abstraction function

• Purely conceptual (not a Java function)

• Allows us to check correctness

– use reasoning to show that the method leaves the abstract state

such that it satisfies the postcondition
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Example: IntDeque

// List that only allows insert/remove at ends.

addLast / removeLast

0  1  2  …

addFront / removeFront

0  1  2  …
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Example: IntDeque

// List that only allows insert/remove at ends.

addLast

removeFront



CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

addLast + removeFront

addLast + removeFront

addLast + removeFront



CSE 331 Summer 2022

Example: IntDeque

// List that only allows insert/remove at ends.

start start+len

start

= (start+len) mod vals.length

vals

vals

?

= start + len – vals.length
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// AF(this) =

//   vals[start..start+len-1] if start+len <= vals.length

//   vals[start..] + vals[0..?] otherwise

private int[] vals;

private int start, len;

// Creates an empty list.

public IntDeque() {

vals = new int[3];

start = len = 0;

}
AF(this) = vals[0..-1] = []
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// AF(this) =

//   vals[start..start+len-1] if start+len <= vals.length

//   vals[start..] + vals[0..?] otherwise

private int[] vals;

private int start, len;

// ...

// @returns length of the list

public int getLength() {

return len;

}
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Example: IntDeque

// List that only allows insert/remove at ends.

start start+len

startk

#items = len

#items = vals.length – (start – k)       (= len?)

vals.length

holds iff k = start + len – vals.length
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// AF(this) =

//   vals[start..start+len-1] if start+len <= vals.length

//   vals[start..] + vals[0..k] otherwise

private int[] vals;

private int start, len;

// ...

// @returns length of the list

public int getLength() {

return len;

}

1 line of code

but 2 cases for reasoning
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires 0 <= i < length

// @returns this[i]

public int get(int i) { ... }

start start+len

startstart + len – vals.length vals.length

vals.length
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires 0 <= i < length

// @returns this[i]

public int get(int i) {

if (start + len <= vals.length) {

return vals[start + i];

} else {

return vals[(start + i) % vals.length];

}

}
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires 0 <= i < length

// @returns this[i]

public int get(int i) {

return vals[(start + i) % vals.length];

}
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Example: IntDeque

/** List that only allows insert/remove at ends. */

public class IntDeque {

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

// @returns value at the front of the list

public int removeFront() { ... }
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Example: IntDeque

// List that only allows insert/remove at ends.

start start+len

removeFront

startstart+len–vals.length vals.length
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Example: IntDeque

// AF(this) =

//   vals[start..start+len-1]   if start+len <= vals.length

//   vals[start..] + vals[0..k] otherwise

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

public void removeFront() {

if (start + 1 < vals.length) {

start += 1;

} else {

start = 0;

}

len -= 1;

}



CSE 331 Summer 2022

Example: IntDeque

// AF(this) =

//   vals[start..start+len-1]   if start+len <= vals.length

//   vals[start..] + vals[0..k] otherwise

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

public void removeFront() {

start = (start + 1) % vals.length;

len -= 1;

}
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Example: IntDeque

// AF(this) =

//   vals[start..start+len-1]   if start+len <= vals.length

//   vals[start..] + vals[0..k] otherwise

// @requires list length > 0

// @modifies this

// @effects first element of list is removed

// @returns value at the front of the list

public int removeFront() {

int val = get(0);

start = (start + 1) % vals.length;

len -= 1;

return val;

}
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Before next class...

1. Start on Prep. Quiz: HW4 as early as possible!

– Reminds you about common set operations

• E.g. union, intersection, complement

– Think about some non-trivial cases needed for the homework

2. Section tomorrow will focus on HW4 preparation.
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Extra: Abstract Interpretation

• Abstraction functions are good for much more (e.g. program analysis)

53
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Extra: Testing

• What is testing? What makes something a good test case?

54


