
CSE 331 Summer 2022

Software Design & Implementation

Topic: Reasoning Wrap-up

CSE 331

💬 Discussion: What is your favorite summer food?

CSE 331 Summer 2022

Reminders

• HW1 grades coming out soon
• Remember to read the HW2 setup instructions very carefully!

• Prep. Quiz: HW2 due today (6/27)

• HW2 due Thursday (6/30)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Recap: Reasoning
o assignment statements
o conditionals

• Loop invariants
o sum of array

• Writing Loops
• Dutch National Flag
• Binary Search
• Reasoning Summary

CSE 331 Summer 2022

Previously on CSE 331...

{{ P }} while (cond) S {{ Q }}

Given an invariant, this triple is valid iff

{{ P }}

{{ Inv: I }}

while (cond)

S

{{ Q }}

• I holds initially
• I holds each time we execute S
• Q holds when I holds and cond is false

QIP

CSE 331 Summer 2022

• Loop invariant comes out of the algorithm idea

– describes partial progress toward the goal

– how you will get from start to end

• Essence of the algorithm idea is:

– invariant

– how you make progress on each step (e.g., i = i + 1)

• Code is ideally just details...

Previously on CSE 331...

CSE 331 Summer 2022

Loop Invariant ➜ Code

In fact, can usually deduce the code from the invariant:

• When does loop invariant satisfy the postcondition?

– gives you the termination condition

• What is the easiest way to satisfy the loop invariant?

– gives you the initialization code

• How does the invariant change as you make progress?

– gives you the rest of the loop body

QIP1P

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (?) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (?) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

When does Inv imply postcondition?

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (?) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

When does Inv imply postcondition?

Happens when i = n

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

Easiest way to make this hold?

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

Easiest way to make this hold?

Take i = 1 and m = max(b[0])

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

}

{{ m = max(b[0], ..., b[n-1]) }}

How do we progress toward termination?
(comes from the algorithm idea)

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

i = i + 1;

}

{{ m = max(b[0], ..., b[n-1]) }}

How do we progress toward termination?

We start at i = 1 and end at i = n, so

Try this.

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

i = i + 1;

}

{{ m = max(b[0], ..., b[n-1]) }}

{{ m = max(b[0], …, b[i-1]) }}

{{ m = max(b[0], …, b[i]) }}

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

??

i = i + 1;

}

{{ m = max(b[0], ..., b[n-1]) }}

{{ m = max(b[0], …, b[i-1]) }}

How do we fill this in?

{{ m = max(b[0], …, b[i-1]) }}

{{ m = max(b[0], …, b[i]) }}

Set m = max(m, b[i])

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

if (b[i] > m) OR m = Math.max(m, b[i]);

m = b[i];

i = i + 1;

}

{{ m = max(b[0], ..., b[n-1]) }}

Set m = max(m, b[i])

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

if (b[i] > m)

m = b[i];

i = i + 1;

}

{{ m = max(b[0], ..., b[n-1]) }}

CSE 331 Summer 2022

Example: max of array

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

int i = 1;

int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}

while (i != n) {

if (b[i] > m)

m = b[i];

i = i + 1;

}

{{ m = max(b[0], ..., b[n-1]) }}

the algorithm idea

CSE 331 Summer 2022

Invariants are Essential

Invariant + progress step is the essence of the algorithm idea

• rest is hopefully just details that follow from the invariant

Work toward thinking at the level of invariants not code

• gain confidence that you can do the rest without difficulty

Q

I1

P

I2

m = max(b[0], ..., b[i-1])

m = max(b[i], ..., b[n-1])

CSE 331 Summer 2022

Loop Invariant Design Pattern

Loop invariant is often a weakening of the postcondition

– partial progress with completion a special case

– small enough weakening that Inv + one condition gives Q

1. sum of array

– postcondition: s = b[0] + b[1] + … + b[n-1]

– loop invariant: s = b[0] + b[1] + … + b[i-1]

• gives postcondition when i = n

2. max of array

– postcondition: m = max(b[0], b[1], …, b[n-1])

– loop invariant: m = max(b[0], b[1], ..., b[i-1])

• gives postcondition when i = n

CSE 331 Summer 2022

Loop Invariant Design Patterns

Algorithm Idea formalized in: Invariant + progress step

• how do you make progress toward termination?

– if condition is i != n (and i <= n)
try i = i + 1

– if condition is i != j (and i <= j)
try i = i + 1 or j = j – 1

QIP

CSE 331 Summer 2022

Finding the loop invariant

Not every loop invariant is simple weakening of postcondition, but…

• that is the easiest case

• it happens a lot

In this class (e.g., homework):

• if I ask you to find the invariant, it will very likely be of this type
– I will ask you to write more complex code when the invariant given

– I will you to check correctness of even more complex code

– HW2-4 will practice these

• to learn about more ways of finding invariants: CSE 421

CSE 331 Summer 2022

A Harder Example

CSE 331 Summer 2022

Example: Dutch National Flag

Problem: Given an array of red, white, and blue pebbles, sort the array so the red
pebbles are at the front, the white pebbles are in the middle, and the blue pebbles
are at the end

Edsgar Dijkstra

CSE 331 Summer 2022

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:

– red then white then blue

– number of each color is unchanged

Want an invariant with

– postcondition as a special case

– precondition as a special case (or easy to change to one)

Mixed colors: red, white, blue

Red White Blue

CSE 331 Summer 2022

Example: Dutch National Flag

The first idea that comes to mind:

like postcondition like initial condition

CSE 331 Summer 2022

Example: Dutch National Flag

The first idea that comes to mind works.

Initial:

Iter 5:

Iter 10:

Iter 15:

Post:

CSE 331 Summer 2022

Other potential invariants

Any of these choices work, making the array more-and-more partitioned as you go:

Red White Blue Mixed

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

CSE 331 Summer 2022

Precise Invariant

Need indices to refer to the split points between colors

0 i j k n

Loop Invariant:

• 0 <= i <= j <= k <= n <= A.length

• A[0], …, A[i-1] are red

• A[i], …, A[j-1] are white

• A[k], …, A[n-1] are blue

No constraints on A[j], ..., A[k-1]

Red White BlueMixed

CSE 331 Summer 2022

Dutch National Flag Code

Invariant:

0 i j k n

Initialization?

Red White BlueMixed

CSE 331 Summer 2022

Dutch National Flag Code

Invariant:

0 i j k n

Initialization?

i = j = 0 and k = n

Red White BlueMixed

CSE 331 Summer 2022

Dutch National Flag Code

Invariant:

0 i j k n

Initialization?

i = j = 0 and k = n

Termination Condition?

Red White BlueMixed

CSE 331 Summer 2022

Dutch National Flag Code

Invariant:

0 i j k n

Initialization?

i = j = 0 and k = n

Termination Condition?

j = k

Red White BlueMixed

CSE 331 Summer 2022

Dutch National Flag Code

int i = 0, j = 0;

int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] are red and ... }}

while (j != k) {

??

}

need to get j closer to k...

let’s try increasing j by 1

CSE 331 Summer 2022

Three cases depending on the value of A[j]:

0 i j k n

A[j] is either red, white, or blue

Red White BlueMixed

Dutch National Flag Code

CSE 331 Summer 2022

Mixed

Dutch National Flag Code

Three cases depending on the value of A[j]:

white

0 i j k n

red

0 i j k n

blue

0 i j k n

Red White Blue

Red White BlueMixed

Red White BlueMixed

CSE 331 Summer 2022

Dutch National Flag Code

int i = 0, j = 0;

int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] are red and ... }}

while (j != k) {
if (A[j] is white) {

j = j+1;
} else if (A[j] is blue) {

swap A[j], A[k-1];
k = k - 1;

} else { // A[j] is red
swap A[i], A[j];
i = i + 1;
j = j + 1;

}
}

notice that we make progress at each step

CSE 331 Summer 2022

Binary Search

CSE 331 Summer 2022

Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x (or where it would be
inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in A[n/2+1], ..., A[n-1].
Narrow the search for x on each iteration.

(This is an algorithm where you probably still need to go line-by-line even as you get faster at reasoning...)

CSE 331 Summer 2022

Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x (or where it would be

inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in A[n/2+1], ..., A[n-1].

Narrow the search for x on each iteration.

i j n

Loop Invariant: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1]

• A[i], ..., A[j-1] is the part where we don’t know relation to x

CSE 331 Summer 2022

Binary Search Code

i j n

Initialization?

CSE 331 Summer 2022

Binary Search Code

i j n

Initialization:

• i = 0 and j = n

• white region is the whole array

CSE 331 Summer 2022

Binary Search Code

i j n

Initialization:

• i = 0 and j = n

• white region is the whole array

Termination condition:

• i = j

• white region is empty

• if x is in the array, it is A[i-1]

– if there are multiple copies of x, this returns the last

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

// need to bring i and j closer together...

// (e.g., increase i or decrease j)

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

Look at the element half way

between i and j

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

??

} else {

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

What goes here?

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

Since i-1 = m, we have A[i-1] = A[m] <= x

Why do we have A[0] <= … <= A[i-1]?

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

invariant satisfied since A[i-1] = A[m] <= x

and A is sorted so A[0] <= … <= A[m]

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

??

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

What goes here?

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

invariant satisfied since x < A[m] = A[j]

(and A is sorted so A[m] <= ... <= A[n-1])

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

Does this always terminate?

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

Must satisfy i <= m < j

(Why?)

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

Must satisfy i <= m < j

so i increases or j decreases

on every iteration

CSE 331 Summer 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}

while (i != j) {

int m = (i + j) / 2;

if (A[m] <= x) {

i = m + 1;

} else {

j = m;

}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

Is that all we need to do?

CSE 331 Summer 2022

Reasoning Summary

CSE 331 Summer 2022

Reasoning Summary

• Checking correctness can be a mechanical process

– using forward or backward reasoning

• This requires that loop invariants are provided

– those cannot be produced automatically

• Provided you document your loop invariants,
it should not be too hard for someone else to review your code

CSE 331 Summer 2022

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

{{ Inv: printed all the strings seen so far }}

for (String s : L)

System.out.println(s);

CSE 331 Summer 2022

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

// Print the strings in L, one per line.

for (String s : L)

System.out.println(s);

CSE 331 Summer 2022

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops.

• Invariants are more helpful when a variable incorporates information from
multiple iterations

– e.g., {{ s = A[0] + … + A[i-1] }}

• Use your best judgement!

CSE 331 Summer 2022

Reasoning Summary

• Correctness: tools, inspection, testing

– need all three to ensure high quality

– especially cannot leave out inspection

• Inspection (by reasoning) means

– reasoning through your own code

– do code reviews

• Practice!

– essential skill for professional programmers

CSE 331 Summer 2022

Reasoning Summary

• You will eventually do this in your head for most code

• Formalism remains useful

– especially tricky problems

– interview questions (often tricky)

CSE 331 Summer 2022

Next Time…

CSE 331 Summer 2022

A Problem

“Complete this method such that it returns the location of the
largest value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {

...

}

CSE 331 Summer 2022

One Solution

int maxLoc(int[] arr, int n) {

int maxIndex = 0;

int maxValue = arr[0];

// Inv: maxValue = max of arr[0] .. arr[i-1] and

// maxValue = arr[maxIndex]

for (int i = 1; i < n; i++) {

if (arr[i] > maxValue) {

maxIndex = i;

maxValue = arr[i];

}

}

return maxIndex;

}

What if n = 0?

What if n > arr.length?

What if there are two maximums?

Is this code correct?

CSE 331 Summer 2022

A Problem

“Complete this method such that it returns the location of the largest value
in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {

...

}

Could we write a specification so that this is a correct solution?

– precondition that n > 0

– throw ArrayOutOfBoundsException if n > arr.length

– return smallest index achieving maximum

CSE 331 Summer 2022

Morals

• You can all write the code correctly

• Writing the specification was harder than the code

– multiple choices for the “right” specification

• must carefully think through corner cases

– once the specification is chosen, code is straightforward

– (both of those will be recurrent themes)

• Some math (e.g. “if n <= 0”) often shows up in specifications

– English (“if n is less or equal to than 0”) is often worse

CSE 331 Summer 2022

How to Check Correctness

• Step 1: need a specification for the function

– can’t argue correctness if we don’t know what it should do

– surprisingly difficult to write!

• Step 2: determine whether the code meets the specification

– apply reasoning

– usually easy with the tools we learned

CSE 331 Summer 2022

Before next class...

1. If you haven’t already done it, do Prep. Quiz: HW2 tonight!

– Reasoning questions

– Designed to take at most 15 minutes

2. Read the HW2 spec early!

– Reasoning worksheet

– Environment setup

– Applying reasoning to code

