CSE 331

Software Design \& Implementation Topic: Reasoning about Loops

㓊 Discussion: What would be your ideal vacation spot?

Reminders

- Check that you have a Gitlab repository!

Upcoming Deadlines

- Prep. Quiz: HW2
- HW2
due Monday (6/27)
due Thursday (6/30)

Last Time...

- Motivation for CSE 331
- Assignment statements
- Conditional statements

Today's Agenda

- Upcoming Assignments
- Quick Recap: Reasoning
- Loop invariants

Upcoming Assignments

Prep. Quiz: HW2

- Due on Monday night
- designed to be a litmus test - ask for help early in the week
- probably should do this earlier than Monday
- focuses on forward and backward reasoning
- Due on Thursday night
- Part 1 is a reasoning worksheet
- Parts 2-3 involve setting up your programming environment
- Parts 4-8 involve some basic programming
- Part 9 involves applying reasoning to code
- Follow setup instructions carefully!
- If you skip a step, it will take much longer to find and fix
- Demo is available on Canvas

Recap: Reasoning

Floyd Logic

- A Hoare triple is two assertions and one piece of code:
- P the precondition
- S the code
- Q the postcondition

specification
method body
- A Hoare triple $\{P\} S\{Q\}$ is called valid if:
- in any state where P holds, executing S produces a state where Q holds
- i.e., if P is true before S, then Q must be true after it
- otherwise, the triple is called invalid
- code is correct iff triple is valid

Reasoning Forward \& Backward

- Forward:
- start with the given precondition
- fill in the strongest postcondition

```
\{P\} \(S\) \{?\}
```

- Backward
- start with the required postcondition
- fill in the weakest precondition

```
{?} S {Q}
```

- Finds the "best" assertion that makes the triple valid

Reasoning: Assignments

Forward:

$$
\begin{aligned}
\{\{w & >0\}\} \\
x & =17 ; \\
\{\{w & >0 \text { and } x=17\}\} \\
y & =42 ; \\
\{\{w & >0 \text { and } x=17 \text { and } y=42\}\} \\
z & =w+x+y ; \\
\{\{w & >0 \text { and } x=17 \text { and } y=42 \text { and } z=w+59\}\}
\end{aligned}
$$

Backward:

$$
\{\{w+17+42<0\}\}
$$

$$
x=17 ;
$$

$$
\{\{w+x+42<0\}\}
$$

$$
y=42 ;
$$

$$
\{\{w+x+y<0\}\}
$$

$$
\mathrm{z}=\mathrm{w}+\mathrm{x}+\mathrm{y} ;
$$

$$
\{\{z<0\}\}
$$

Validity with Fwd \& Back Reasoning

Reasoning in either direction gives valid assertions. Just need to check adjacent assertions (i.e. top assertion must imply bottom one)

Reasoning: If Statements

Forward reasoning

Backward reasoning

```
^ {{ cond and Q1 or not cond and Q2 }}
    if (cond)
    {{ Q1 }}
    S1
        {{Q}}
    else
        {{ Q2 }}
        S2
\longrightarrow{{Q }}
    {{Q }}
```


Practice: Forward Reasoning

$$
\{\{i+j=10\}\}
$$

$$
\text { if }(i>j)\{
$$

$$
\{\{
$$\}\}

$$
i=i-1
$$

$$
j=j+1
$$

$$
\{\{\ldots
$$

$$
\text { \} else \{ }
$$

\}\}

$$
i=i+1
$$

$$
j=j-1
$$

\}
\qquad

Practice：Backward Reasoning

```
{{___}}
if (x != 0) {
    {{__⿱_⿴⿱冂一一⿰冫⿰亅⿱丿丶丶⿱⿰㇒一十凵
    z = x
    {{___}}
} else {
    {{___}}
    z = x + 1
    {{___}}
}
{{z>0 }}
```


Loop Invariants

Reasoning So Far

- Mechanical reasoning about assignment and conditionals
- All code can be rewritten using only:
- assignments
- if statements
- while loops
- Only part we are missing is loops
- (We will also cover function calls later.)

Reasoning About Loops

- Loop reasoning is not as easy as with "=" and "if"
- Because of Rice's Theorem (mentioned in 311): checking any non-trivial semantic property about programs is undecidable
- We need help (i.e., more information) before the reasoning again becomes a mechanical process
- That help comes in the form of a "loop invariant"

Loop Invariant

A loop invariant is an assertion that holds whenever the loop condition is evaluated:

```
{{ Inv:
```

\qquad

``` \}\}
while (cond) {
    S
}
```


Lupin variants

Loop Invariant

A loop invariant is an assertion that holds whenever the loop condition is evaluated:

```
{{ Inv:
```

\qquad

``` \}\}
while (cond) {
    S
}
```

- It holds when we first get to the loop.
- It holds each time we execute S and come back to the top.

Lupin variants

Notation: I'll use "Inv:" to indicate a loop invariant.

Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{ P }}
    S1
{{ Inv: I }}
    while (cond)
        S2
    S3
{{ Q }}
```


Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{ P }}
    S1
{{ P1 }}
{{Inv: I }} (i.e., that I is true the first time)
    while (cond)
        S2
    S3
{{Q}}
```


Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{P }}
    S1
{{ Inv: I }}
    while (cond)
        S2
{{ I and not cond }}
    S3
{{P3}}
{{Q}}
```

Need to check that P3 implies Q (i.e., Q holds after the loop)

Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

```
{{ P }}
    S1
{{ Inv: I }}
    while (cond)
        S2
    S3
{{ Q }}
```

Informally, we need:

- I holds initially
- I holds each time around
- Q holds after we exit

Formally, we need validity of:

- $\{\{P\}\}$ S1 \{\{ I$\}\}$
- $\{\{$ I and cond $\}\}$ S2 $\{\{$ I \}\}
- $\{\{I$ and not cond $\}\}$ S3 $\{\{\mathrm{Q}\}\}$
(can check these with backward reasoning instead)

More on Loop Invariants

- Loop invariants are crucial information
- needs to be provided before reasoning is mechanical
- Pro Tip: always document your invariants for non-trivial loops
- don't make code reviewers guess the invariant
- Pro Tip: with a good loop invariant, the code is easy to write
- all the creativity can be saved for finding the invariant
- more on this in later lectures...

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}}
s = 0;
i = 0;
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```


Equivalent to:

```
s = 0;
for (int i = 0; i != n; i++)
    s = s + b[i];
```


Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$ \}
$s=0 ;$
i $=0$;
$\{\{$ Inv: $s=b[0]+\ldots+b[i-1]\}\}$
while (i ! = n)
$s=s+b[i] ;$
$i=i+1 ;$
\}
$\{\{s=b[0]+\ldots+b[n-1]\}\}$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$ \}
$s=0 ;$
i $=0$;
$\{\{$ Inv: $s=b[0]+\ldots+b[i-1]\}\}$
while (i ! = n)
$s=s+b[i] ;$
$i=i+1 ;$
\}
$\{\{s=b[0]+\ldots+b[n-1]\}\}$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}\}$
$s=0 ;$
i $=0$;
, $\{\{s=0$ and $i=0\}\}$
$\{\{$ Inv: $s=b[0]+\ldots+b[i-1]\}\}$
while (i != n) \{
$\mathrm{s}=\mathrm{s}+\mathrm{b}[\mathrm{i}] ;$
$i=i+1 ;$
\}
$\{\{s=b[0]+\ldots+b[n-1]\}\}$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$ \}

$$
s=0 ;
$$

$$
i=0 ;
$$

$$
\{\{s=0 \text { and } i=0\}\}
$$

$$
\{\{\text { Inv: } s=b[0]+\ldots+b[i-1]\}\}
$$

$$
\text { while (i }!=n) \text { \{ }
$$

$$
s=s+b[i] ;
$$

$$
i=i+1 ;
$$

$$
\}
$$

$$
\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1]\}\}
$$

- ($s=0$ and $\mathrm{i}=0$) implies

$$
s=b[0]+\ldots+b[i-1] ?
$$

Less formal
$s=$ sum of first i numbers in b

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$ \}

```
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0]+\ldots+b[n-1]}}
```

- $\quad(s=0$ and $i=0)$ implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

Less formal
$s=s u m$ of first i numbers in b

When $\mathrm{i}=0$, s needs to be the sum of the first 0 numbers, so we need $s=0$.

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$

```
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + .. + +b[n-1]}}
```

- $\quad(s=0$ and $i=0)$ implies $\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1]$?

More formal
$s=$ sum of all $b[k]$ with $0 \leq k \leq i-1$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$ \}

```
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
\(s=0 ;\)
i \(=0\);
\(\{\{\mathrm{s}=0\) and \(\mathrm{i}=0\}\}\)
\(\{\{\) Inv: \(s=b[0]+\ldots+b[i-1]\}\}\)
```

- $\quad(s=0$ and $i=0)$ implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

More formal

$$
\begin{aligned}
& s=\text { sum of all } b[k] \text { with } 0 \leq k \leq i-1 \\
& i=3(0 \leq k \leq 2): s=b[0]+b[1]+b[2] \\
& i=2(0 \leq k \leq 1): s=b[0]+b[1] \\
& i=1(0 \leq k \leq 0): s=b[0] \\
& i=0(0 \leq k \leq-1) s=0
\end{aligned}
$$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}}
s=0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    S = S + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- ($s=0$ and $\mathrm{i}=0$) implies

$$
s=b[0]+\ldots+b[i-1] ?
$$

More formal
$s=$ sum of all $b[k]$ with $0 \leq k \leq i-1$
when $\mathrm{i}=0$, we want to sum over all indexes k satisfying $0 \leq k \leq-1$

There are no such indexes, so we need $\mathrm{s}=0$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\{$ \}\}

```
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + .. + +b[i-1] }}
while (i != n)
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- $\quad(s=0$ and $i=0)$ implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

Yes. (An empty sum is zero.)

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:
\{ $\}$ \}
$s=0 ;$
i $=0$;
$\{\{\mathrm{s}=0$ and $\mathrm{i}=0\}\}$
$\{\{$ Inv: $s=b[0]+\ldots+b[i-1]\}\}$
while (i ! = n)
$\mathrm{s}=\mathrm{s}+\mathrm{b}[\mathrm{i}] ;$
$i=i+1 ;$
\}
$\{\{s=b[0]+\ldots+b[n-1]\}\}$

Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}}
s = 0;
i = 0;
- (s = 0 and i = 0) implies I
- {{ I and i != n }} S {{ I }} ?
{{ Inv: s = b[0] + ... + b[i-1]}}
while (i != n) {
    {{s=b[0] + ... +b[i-1] and i != n }}
    s = s + b[i];
    i = i + 1;
    {{s=b[0] + ... +b[i-1]}}
}
{{s=b[0] + ... +b[n-1] }}
```


Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... + b[i-1]}}
```

while (i != n)

```
while (i != n)
    {{s=b[0]+\ldots+b[i-1] and i!= n }}
    {{s=b[0]+\ldots+b[i-1] and i!= n }}
    s = s + b[i];
    s = s + b[i];
    i = i + 1;
    i = i + 1;
    {{s=b[0]+\ldots+b[i-1]}}
    {{s=b[0]+\ldots+b[i-1]}}
}
}
{{s=b[0] + ... +b[n-1] }}
```

```
{{s=b[0] + ... +b[n-1] }}
```

```
- \((s=0\) and \(i=0)\) implies \(I\)
- \(\quad\{\{\mathrm{I}\) and \(\mathrm{i}!=\mathrm{n}\}\} \mathrm{S}\{\{\mathrm{I}\}\}\) ?
\[
\begin{aligned}
& \{\{s+b[i]=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}]\}\} \\
& \{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}]\}\}
\end{aligned}
\]

\section*{Example: sum of array}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{}}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
s = s + b[i];
i = i + 1;
}
{{s=b[0] + .. + b[i-1] and not (i != n) }}
{{s = b[0] + ... +b[n-1]}}

```
- \((s=0\) and \(i=0)\) implies \(I\)
- \(\quad\{\{\mathrm{I}\) and \(\mathrm{i}!=\mathrm{n}\}\} \mathrm{S}\{\{\mathrm{I}\}\}\) ?
- \(\quad\{\{\) I and not \((\mathrm{i}!=\mathrm{n})\) \}\} implies
\[
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1] ?
\]

\section*{Example: sum of array}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{}}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... +b[i-1] }}
while (i != n)
s = s + b[i];
i = i + 1;
}
{{s = b[0] + ... +b[n-1] }}

```
- \((s=0\) and \(\mathrm{i}=0)\) implies I
- \(\{\{\) I and \(\mathrm{i}!=\mathrm{n}\}\} \mathrm{S}\{\{\mathrm{I}\}\}\)
- \(\{\{\) I and \(\mathrm{i}=\mathrm{n}\}\}\) implies \(Q\)

These three checks verify that the outermost triple is valid (i.e., that the code is correct).

\section*{Termination}
- Technically, this analysis does not check that the code terminates
- it shows that the postcondition holds if the loop exits
- but we never showed that the loop actually exits
- However, that follows from an analysis of the running time
- e.g., if the code runs in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time, then it terminates
- an infinite loop would be O(infinity)
- any finite bound on the running time proves it terminates
- It is normal to also analyze the running time of code we write, so we get termination already from that analysis.

\section*{Example HW problem}

The following code to compute \(b[0]+\ldots+b[n-1]\) :
```

\{ $\}$
s = 0;
$\{1$ _ $\}\}$
i = 0;
$\{\{\ldots$
$\{\{\operatorname{lnv}: s=b[0]+\ldots+b[i-1]\}$
while (i != n)
$\{\{\ldots$
s = s + b[i];
$\{\{\ldots$
i = i + 1;
$\{$ _ $\}$
\}
$\{\{\ldots$
$\{\{s=b[0]+\ldots+b[n-1]\}\}$

```

\section*{Example HW problem}

The following code to compute \(b[0]+\ldots+b[n-1]\) :
```

\{ $\}\}$
s = 0;
$\{\{s=0\}\}$
i $=0$;
$\{\{s=0$ and $i=0\}$
$\{\{\operatorname{lnv}: s=b[0]+\ldots+b[i-1]\}$
while (i ! = n) \{
$\{\{s+b[i]=b[0]+\ldots+b[i]\}\}$ or equiv $\{\{s=b[0]+\ldots+b[i-1]\}$
s = s + b[i];
$\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}\}\}$
i = i + 1;
$\{\{s=b[0]+\ldots+b[i-1]\}\}$
\}
$\{\{s=b[0]+\ldots+b[i-1]$ and not $(i!=n)\}\}$
$\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1]\}\}$

```

\section*{Warning: not just filling in blanks}

The following code to compute \(b[0]+\ldots+b[n-1]\) :
```

{{ }}
s = 0;
{{s=0 }}
i = 0;
{{s=0 and i= 0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
{{ s = b[0] + ... + b[i-1] }}
s = s + b[i];
{{s=b[0] + ... +b[i] }}
i = i + 1;
{{s=b[0] + ... + b[i-1]}}
}
{{s=b[0] + ... +b[i-1] and not (i != n) }}
{{s=b[0] + ... +b[n-1]}}

```

\section*{Warning: not just filling in blanks}

The following code to compute \(b[0]+\ldots+b[n-1]\) :
```

{{ }}
s = 0;
{{s=0 }}
i = 0;
{{s=0 and i=0 }}
{{ Inv: s=b[0] + ... +b[i-1]}}
while (i != n) {
Does loop body preserve invariant?
{{ s=b[0] + .. + b[i-1]}}
s = s + b[i];
{{s=b[0] + ... + b[i] }}
i = i + 1;
{{s=b[0] + ... +b[i-1] }}
}
{{s=b[0] + ... + b[i-1] and not (i != n) }}
{{s=b[0] + ... +b[n-1]}}

```

\section*{Warning: not just filling in blanks}

The following code to compute \(b[0]+\ldots+b[n-1]\) :
```

\{ $\{$ \}\}
$\mathrm{s}=0$;
$\{\{s=0\}\}$
i = 0;
\{\{ $\mathrm{s}=0$ and $\mathrm{i}=0$ \}\}
$\{\{$ Inv: $s=b[0]+\ldots+b[i-1]\}$
while (i != n) \{
$\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[i-1]\}\}$
$\mathrm{s}=\mathrm{s}+\mathrm{b}[\mathrm{i}] ;$
$\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[i]\}\}$
i = i + 1;
$\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[i-1]\}\}$
\}
$\{\{s=b[0]+\ldots+b[i-1]$ and not $(i!=n)\}\}$
$\{\{s=b[0]+\ldots+b[n-1]\}\}$

```

Are we done?
No, need to also check...

\section*{Warning: not just filling in blanks}

The following code to compute \(b[0]+\ldots+b[n-1]\) :
```

{{}}
s = 0;
{{s=0 }}
i = 0;
{{s=0 and i= 0 }}
{{ Inv: s=b[0] + ... +b[i-1]}}
while (i != n) {
{{s=b[0]+···+b[i-1]}}
s = s + b[i];
{{s=b[0] + ... +b[i] }}
i = i + 1;
{{s=b[0] + ... +b[i-1] }}
}
{{s=b[0] + ... + b[i-1] and not (i != n) }}
{{s=b[0] + ... + b[n-1]}}

```

Are we done?
No, need to also check...

HW has "?"s at these three places to indicate a triple that requires explanation

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
\{ \(\}\}\)
s = 0;
i \(=-1\);
\(\{\{\) Inv: \(\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}]\}\}]\) Changed
while (i ! \(=\) n-1) \{
i \(=1+1\);
\(s=s+b[i] ;\)
\}
\(\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1]\}\}\)

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
\{ \(\}\) \}
\(s=0 ;\)
i \(=-1 ; \quad]\) Changed from \(\mathrm{i}=0\)
\(\{\{\) Inv: \(s=b[0]+\ldots+b[i]\}\}\)
```

while (i != n-1) {
i = i + 1;
s = s + b[i];
] Changed from n
Reordered
}
{{s=b[0] + ... +b[n-1] }}

```

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{}}
s = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
i = i + 1;
s = s + b[i];
}
{{s=b[0] + ... +b[n-1] }}

```

Work as before:
- \((s=0\) and \(i=-1)\) implies \(I\)
- I holds initially
- ( I and \(\mathrm{i}=\mathrm{n}-1\) ) implies Q
- I implies \(Q\) at exit

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

\{ $\}$ \}
$\mathrm{s}=0$;
i $=-1$;
$\{\{$ Inv: $s=b[0]+\ldots+b[i]\}\}$
while (i != n-1)
$\{\{s+b[i+1]=b[0]+\ldots+b[i+1]\}\}$
$i=i+1 ; \quad\{\{\mathrm{s}+\mathrm{b}[\mathrm{i}]=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}]\}\}$
$s=s+b[i] ;$
$\{\{$ Inv: $s=b[0]+\ldots+b[i]\}\}$
$\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1]\}\}$

```

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{}}
s = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
i = i + 1;
s = s + b[i];
}
{{s = b[0] + ... +b[n-1] }}

```
- ( \(\mathrm{s}=0\) and \(\mathrm{i}=-1\) ) implies I
- as before
- \(\{\{I\) and i ! \(=\mathrm{n}-1\) \}\} \(\mathrm{S}\{\{\mathrm{I}\}\}\)
- reason backward
- ( I and \(\mathrm{i}=\mathrm{n}-1\) ) implies Q
- as before

\section*{Example: sum of array (attempt 3)}

Consider the following code to compute b[0] + ... + b[n-1]:
\{ \(\}\) \}
\(s=0 ;\)
i \(=-1\);
\(\{\{\) Inv: \(\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}]\}\}\)
while (i ! = n-1) \{
\(s=s+b[i] ;\)
\(i=i+1 ;\)
\}
\(\{\{s=b[0]+\ldots+b[n-1]\}\}\)

Suppose we miss-order the assignments to i and s...

Where does the correctness check fail?

\section*{Example: sum of array (attempt 3)}

Consider the following code to compute b[0] + ... + b[n-1]:

\section*{\{ \(\}\)}
\(s=0 ;\)
\(i=-1\);
\(\{\{\) Inv: \(s=b[0]+\ldots+b[i]\}\}\)
\(\uparrow\) while (i \(!=n-1\) ) \{
\(s=s+b[i] ;\)
\(i=i+1 ;\)
\}
\(\{\{s=b[0]+\ldots+b[n-1]\}\}\)

Suppose we miss-order the assignments to i and s...

We can spot this bug because the invariant does not hold:
```

{{s + b[i] = b[0] + ... + b[i+1]}}

```
\(\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[i+1]\}\}\)
\(\{\{\) Inv: \(s=b[0]+\ldots+b[i]\}\}\)

First assertion is not Inv.

\section*{Example: sum of array (attempt 3)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{}}
s = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
s = s + b[i];
i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}

```

Suppose we miss-order the assignments to i and s...

We can spot this bug because the invariant does not hold:
\[
\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1]+\mathrm{b}[\mathrm{i}+1]\}\}
\]

For example, if \(\mathrm{i}=2\), then
\[
\begin{aligned}
& s=b[0]+b[1]+b[2] \quad \text { vs } \\
& s=b[0]+b[1]+b[3]
\end{aligned}
\]

\section*{Before next class...}
1. Try to do Prep. Quiz: HW2 before Monday!
- Reasoning questions
- Designed to take no more than 15 minutes
2. Read the HW2 spec early!
- Reasoning worksheet
- Environment setup
- Applying reasoning to code

Extras

\section*{Extra: \(x^{y}\) (attempt 1)}

What should be the loop invariant in the following code for exponentiation:
```

public int pow(int x, int y) {
{{ y >= 0 }}
int z = 0;
int i = 0;
{{ Inv:

```
\(\qquad\)
``` \}\}
 while (i != y) {
 z = z * x;
 i = i + 1;
 }
 {{z=x^y y}
 return z;
}
```


## Extra: $x^{y}$ (attempt 2)

What should be the loop invariant in the following code for exponentiation:

```
public int pow(int x, int y) {
 {{ y >= 0 }}
 int z = 0;
 {{ Inv:
```

$\qquad$

``` \}\}
 while (y != 0) {
 z = z * x;
 y = y - 1;
 }
 {{z=x^y }}
 return z;
}
```


## Extra: partition array

Consider the following code to put the negative values at the beginning of array b :

```
{{ 0<= n <= b.length }}
i = k = 0;
while (i != n) {
 if (b[i] < 0) {
 swap b[i], b[k];
 k = k + 1;
 }
 i = i + 1;
}
{{b[0], ...,b[k-1] < 0 <= b[k], .., b[n-1] }}
```

(Also: precondition is true throughout the code. I'll skip writing that to save space...)
(Also: b contains the same numbers since we use swaps.)

