
CSE 331

Software Design & Implementation

Spring 2022

HW9, JSON, and Fetch

UW CSE 331 Spring 2022 1

Administrivia

• HW8 due today (Thur. 5/26 @ 11:00pm)

– Extra credit available!

– No Gitlab pipeline, but you still need to tag!

– No re-runs (no staff tests). It’s your responsibility to check

that your submission runs without any compilation errors!

• Double-check you tagged the correct commit by heading over

to GitLab, and locating Repository > Graph on the left sidebar!

• HW9 due next Friday (6/3 @ 11:00pm)

– Extra credit available!

• Get creative! Lots of cool opportunities.

– No GitLab pipeline, tag needed still! No re-runs again.

• Any questions?

2UW CSE 331 Spring 2022

Agenda

• HW9 Overview

• JSON

– Brief overview

– Helps share data between Java and JS.

• Fetch

– How your JS sends requests to the Java server.

UW CSE 331 Spring 2022 3

Homework 9 Overview

• Creating a new web GUI using React

– Display a map and draw paths between two points on the

map.

– Similar to your React app in HW8 – but you may add more!

– Send requests to your Java server (new) to request building

and path info.

• Creating a Java server as part of your previous HW5-7 code

– Receives requests from the React app to calculate

paths/send data.

– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.

UW CSE 331 Spring 2022 4

The Map Lines Stack

UW CSE 331 Spring 2022 5

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

“Can I have the webpage?”

“Here’s some HTML and

JS”

MapLines

*Note: This is not Apache Spark

The Campus Paths Stack

UW CSE 331 Spring 2022 6

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your TypeScript Code

<Map>

<button>

Other Components

“Can I have the webpage?”

“Here’s some HTML and

JS”

“How do I go from CSE to

CS2?”

“Here’s some JSON with

your data.”

CampusPaths

*Note: This is not Apache Spark

Any Questions?

• Done:

– HW9 Basic Overview

• Up Next:

– JSON

– Fetch

UW CSE 331 Spring 2022 7

JSON

• We have a whole application written in Java so far:

– Reads CSV data, manages a Graph data structure with

campus data, uses Dijkstra’s algorithm to find paths.

• We’re writing a whole application in JavaScript:

– React web app to create an interactive GUI for your users

• Even if we get them to communicate (discussed later), we need

to make sure they “speak the same language”.

– JavaScript and Java store data very differently.

• JSON = JavaScript Object Notation

– Can convert JS Object → String, and String → JS Object

– Bonus: Strings are easy to send inside server

requests/responses.

UW CSE 331 Spring 2022 8

JSON ↔ Java

UW CSE 331 Spring 2022 9

public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]

{"Purple", "Gold"};

}

Java Object JSON String

• Use Gson (a library from Google) to
convert between them.

– Tricky (but possible) to go from JSON String
to Java Object, but we don’t need that for
this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo();
String json = gson.toJson(sInfo);

{"name":"U of

Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs

II","isRainy":true,"website":"www.uw.e

du","colors":["Purple","Gold"]}

JSON ↔ JS

UW CSE 331 Spring 2022 10

let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of

Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs

II","isRainy":true,"website":"www.uw.e

du","colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)

• This means: if the server sent back a JSON String, it’d be easy to use

the data inside of it – just turn it into a JS Object and read the fields out

of the object.

JSON – Key Ideas

• Use Gson to turn Java objects containing the data into JSON

before we send it back.

– The Java objects don’t have to be simple, like in the

example, Gson can handle complicated structures.

• We can then turn the JSON string into a Javascript object so we

can use the data (fetch can help us with that).

UW CSE 331 Spring 2022 11

Any Questions?

• Done:

– HW9 Basic Overview

– JSON

• Up Next:

– Fetch

UW CSE 331 Spring 2022 12

What is a Request?

• Recall from lecture:

– When you type a URL into your browser, it makes a GET

request to that URL, the response to that request is the website

itself (HTML, JS, etc..).

• A GET request says “Hey server, can I get some info about

_____?”

– We’re going to make a request from inside Javascript to ask for

data about paths on campus.

– There are other kinds of requests, but we’re just using GET.
(It’s the default for fetch).

• Each “place” that a request can be sent is called an “endpoint.”

– Your Java server will provide multiple endpoints – one for each

kind of request that your React app might want to make.

• Find a path, get building info, etc...

UW CSE 331 Spring 2022 13

Forming a Request

UW CSE 331 Spring 2022 14

• Basic request with no extra data: "http://localhost:4567/getSomeData"

– A request to the "/getSomeData" endpoint in the server at "localhost:4567"

– "localhost" just means “on this same computer”

– ":4567" specifies a port number – every computer has multiple ports so

multiple things can be running at a given time.

• Sending extra information in a request is done with a query string:

– Add a "?", then a list of "key=value" pairs. Each pair is separated by "&".

– Query string might look like: "?start=CSE&end=KNE"

• Complete request looks like:

http://localhost:4567/findPath?start=CSE&end=KNE

• Sends a “/findPath” request to the server at “localhost:4567”, and

includes two pieces of extra information, named “start” and “end”.

• You don’t need to name your endpoints or query string parameters

anything specific, the above is just an example.

Server Address: http://localhost:4567

Forming a Request

UW CSE 331 Spring 2022 15

http://localhost:4567/getSomeData

http://localhost:4567/findPath?start=CSE&end=KNE

http://washington.edu/about.....

Hostname Port* Endpoint

Query Params*

*Port and query params are technically optional

Server Address: http://localhost:4567

Servicing Requests

• Recall from lecture:

– We need some way to respond to these requests

– This is what we use our SparkServer for!

– For each “endpoint” we want, we need to define a route:

UW CSE 331 Spring 2022 16

Spark.get("/hello-world", new Route() {

@Override

public Object handle(Request request, Response response)

throws Exception {

// we need to return our response

return "Hello, Spark!";

}

});

Requests and Spark Server Demo

UW CSE 331 Spring 2022 17

Running the Section Demo

• Like last time, download and unzip the files from the website.

• New > Project from Existing Sources…

– Choose the build.gradle file

inside of the sec09-demo directory.

UW CSE 331 Spring 2022 18

Running the Section Demo

• Get the installation out of the way since it takes a while (have

this install in the background while you check out the Spark

demo!)

• In the IntelliJ terminal:

– cd src/main/react

– npm install

• Success! (Again, these warnings are expected and normal.)

UW CSE 331 Spring 2022 19

Starting up the Spark Server

• Start up the Spark Server by running the runSpark Gradle task.

• Alternatively, run the main method of
src/main/java/sparkDemo/SparkServer.java

Compile error? Make sure you’re using Java 11!

File > Project Structure > Project

Check that the SDK is correct!

UW CSE 331 Spring 2022 20

Starting up the Spark Server

• Your server is now running on http://localhost:4567

• These are not errors – the server just outputs info in red text.

• Let’s try sending a request to the server…

– Visit http://localhost:4567 in a browser

UW CSE 331 Spring 2022 21

Starting up the Spark Server

• We got a 404 Not Found Page.

Why is this?

• INFO spark.http.matching.MatcherFilter - The requested route [/] has

not been mapped in Spark for Accept

• Our server doesn’t have an endpoint called “/”

• But our server does have other endpoints. Let’s examine the code…

– Open up src/main/java/sparkDemo/SparkServer.java

UW CSE 331 Spring 2022 22

Example 1:

Hello, World

Spark.get("/hello-world", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

// As a first example, let's just return

// a static string.

return "Hello, Spark!";

}

});

UW CSE 331 Spring 2022 23

Example 2:

Create Your Own Route!

• Create your own endpoint!

Spark.get("/your-endpoint-here", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

return "Your message here!";

}

});

• When you’re done, you’ll need to restart the server. Use the stop

button and re-run the runSpark Gradle task.

– Visit your newly-created endpoint!

UW CSE 331 Spring 2022 24

Example 3:

Query Parameters

Spark.get("/hello-someone", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

String personName = request.queryParams("person");

return "Hello, " + personName + "!";

}

});

UW CSE 331 Spring 2022 25

Example 4:

Parameter Error Handling

Spark.get("/hello-someone-with-error", new Route() {

...

String personName = request.queryParams("person");

if (personName == null) { Spark.halt(400); }

return "Hello, " + personName + "!";

}

});

UW CSE 331 Spring 2022 26

Example 5:

Sending Back a Simple Java Object

Spark.get("/range", new Route() {

...

List<Integer> range = new ArrayList<>();

for (int i = start; i <= end; i++) {

range.add(i);

}

Gson gson = new Gson();

String jsonResponse = gson.toJson(range);

return jsonResponse;

}

});

UW CSE 331 Spring 2022 27

Example 5:

Sending Back a Simple Java Object

• Tip: Use the network tab to view requests and responses!

UW CSE 331 Spring 2022 28

Example 5:

Sending Back a Simple Java Object

• Use descriptive and informative error messages!

Spark.halt(400, "must have start and end");

• Limited freedom to

pick a status #!

– See the docs

UW CSE 331 Spring 2022 29

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Example 6:

Sending Back a Complex Java Object
Spark.get("/range-info", new Route() {

...

// RangeInfo is a class with fields:

// start, end, range, primes, average

RangeInfo rangeInfo = new RangeInfo(start, end);

Gson gson = new Gson();

return gson.toJson(rangeInfo);

}

});

• The network tab also shows this!

UW CSE 331 Spring 2022 30

Fetch

• Used by JS to send requests to servers to ask for info.

– alternative to XmlHttpRequest

• Uses Promises:

– Promises capture the idea of “it’ll be finished later.”

– Asking a server for a response can be slow, so Promises

allow the browser to keep working instead of stopping to

wait.

– Getting the data out is a little more complicated.

– Java has Promises too – called CompletableFuture

• Can use async/await syntax to deal with promises.

UW CSE 331 Spring 2022 31

Sending the Request in React

• The URL you pass to fetch() can include a query string if you

need to send extra data.

• responsePromise is a Promise object

– Once the Promise “resolves,” it’ll hold whatever is sent back

from the server.

• How do we get the data out of the Promise?

– We can await the promise’s resolution.

– await tells the browser that it can pause the currently-

executing function and go do other things. Once the promise

resolves, it’ll resume where we left off.

– Prevents the browser from freezing while the request is

happening (which can take some time to complete)

UW CSE 331 Spring 2022 32

let responsePromise = fetch("http://localhost:4567/findPath?start=CSE&end=KNE");

Getting Useful Data

UW CSE 331 Spring 2022 33

async sendRequest() {
let responsePromise = fetch("...");
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is

pause-able”

Will eventually

resolve to an

actual JS object

based on the

JSON string.

Once we have

the data, store it

in a useful place.

Error Checking

UW CSE 331 Spring 2022 34

async sendRequest() {
try {

let response = await fetch("...");
if (!response.ok) {

alert("Error message!");
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert("Error message!");

}
}

Every response has

a ‘status code’ (404

= Not Found). This

checks for

200-299 = OK

On a complete

failure (e.g. server

isn’t running) an

error is thrown.

Make sure you

create informative

and helpful error

messages!

Fetch Demo

UW CSE 331 Spring 2022 35

Running the Fetch Demo

• Make sure your Spark Server is running (runSpark Gradle task)

• In the IntelliJ terminal:

– Make sure you’re in src/main/react

– npm start

• A browser window should open up automatically

UW CSE 331 Spring 2022 36

Example 7:

Fetch

App.tsx:

constructor(props: {}) {

super(props);

this.state = { requestResult: "NO REQUEST RESULT" };

}

render() {

return (

<div className="App">

<p>{this.state.requestResult}</p>

<button onClick={this.makeRequestLong}>

Make a Request

</button>

</div>

);

}
UW CSE 331 Spring 2022 37

Example 7:

Fetch
makeRequestLong = async () => {

try {

let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React");

let response = await responsePromise;

if (!response.ok) {

alert("Error! Expected: 200, Was: " + response.status);

return;

}

let textPromise = response.text();

let text = await textPromise;

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};

UW CSE 331 Spring 2022 38

Example 7:

Fetch
makeRequestLong = async () => {

try {

let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React");

let response = await responsePromise;

...

};

UW CSE 331 Spring 2022 39

The type of this is
Promise<Response>

await “resolves” a promise

(waits for the promise to be fulfilled)

The type of this is
Response

Do NOT use https

Example 7:

Fetch
makeRequestLong = async () => {

...

if (!response.ok) {

alert("Error! Expected: 200, Was: " + response.status);

return;

}

...

};

UW CSE 331 Spring 2022 40

Stop the execution of this function if the response is bad.
Response objects have other fields too, such as:

• .headers

• .statusText

• .url

Check out the docs for more info on Response objects!

https://developer.mozilla.org/en-US/docs/Web/API/Response

Example 7:

Fetch
makeRequestLong = async () => {

...

let textPromise = response.text();

let text = await textPromise;

...

};

UW CSE 331 Spring 2022 41

This endpoint returns a

string (text). If your endpoint

returns a JSON string, use
response.json() instead.Since we used .text(),

the type of this is
Promise<string>

Promise<string>

resolves into string.

text is of type string.

Example 7:

Fetch
makeRequestLong = async () => {

...

let text = await textPromise;

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};

UW CSE 331 Spring 2022 42

We update the state with

the response from the

server!

Handle errors gracefully and inform the user of an

error. Most common sources of errors:

• Fetch URL is wrong

• Server is offline
• Using .json() if the response doesn’t contain

valid JSON

Example 7:

Fetch

Recap:

• When we click the button, its onClick listener will call the

callback function we passed in: this.makeRequestLong

• this.makeRequestLong sends a fetch request to our Spark

Server: http://localhost:4567/hello-someone?person=React

• this.makeRequestLong receives a response from the server

and updates App’s state

• React notices the state update

and queues a re-render

• The <p> element is re-rendered

with the updated state!

UW CSE 331 Spring 2022 43

Queue a

re-render!

Example 8:

Fetch, but more compact
makeRequest = async () => {

try {

let response = await fetch("...");

if (!response.ok) {

alert("...");

return;

}

let text = await response.text();

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};

UW CSE 331 Spring 2022 44

Reduced the number of

temporary variables!

Things to Know

• Can only use the await keyword inside a function declared with the

async keyword.

– async keyword means that a function can be “paused” while

await-ing

• async functions automatically return a Promise that (will eventually)

contain(s) their return value.

– This means that if you need a return value from the function you

declared as async, you’ll need to await the function call.

– But that means that the caller also needs to be async.

– Therefore: generally best to not have useful return values from

async functions (in 331, there are lots of use cases outside of

this course, but can get complicated fast).

– Instead of returning, consider calling setState to store the result

and trigger an update.
UW CSE 331 Spring 2022 45

More Things to Know

• Error checking is important.

– If you forget, the error most likely will disappear without

actually causing your program to explode.

– This is BAD! Silent errors can cause tricky bugs.

– Happens because errors don’t bubble outside of promises,

and the async function you’re inside is effectively “inside” a

promise.

– Means that if you don’t catch an exception, it’ll just disappear

as soon as your function ends.

UW CSE 331 Spring 2022 46

More More Things to Know

• The return value of await response.json() will be any

– As we know, this is dangerous! (No TypeScript checks)

• To solve, we create an interface describing what the server will
respond with (e.g. a Path) and cast the value to that type:

interface Path { ... }

const parsed: Path = await response.json() as Path;

• Note: This does not check that the value actually has this type

– If the server sends back something different, could crash later

– A true solution would check the object before casting

• Can get pretty complicated – not required for HW9

• If you're curious – libraries like io-ts can help with this

UW CSE 331 Spring 2022 47

Any Questions?

• Done:

– HW9 Overview

– JSON

– Fetch

UW CSE 331 Spring 2022 48

Wrap-Up

• Don’t forget:

– HW8 due today (Thur. 5/26 @ 11:00pm)

– HW9 due next week (Fri. 6/3 @ 11:00pm)

• Use your resources!

– Office Hours

– Links from HW specs

– React Tips & Tricks Handout (See “Resources” page on the

course website)

– Other students (remember academic honesty policies: can’t

share/show/copy code, but discussion is great!)

– Google (carefully, always fully understand code you use)

UW CSE 331 Spring 2022 49

