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Administrivia

• HW8 due today (Thur. 5/26 @ 11:00pm)

– Extra credit available!

– No Gitlab pipeline, but you still need to tag!

– No re-runs (no staff tests). It’s your responsibility to check 

that your submission runs without any compilation errors!

• Double-check you tagged the correct commit by heading over 

to GitLab, and locating Repository > Graph on the left sidebar!

• HW9 due next Friday (6/3 @ 11:00pm)

– Extra credit available!

• Get creative! Lots of cool opportunities.

– No GitLab pipeline, tag needed still! No re-runs again.

• Any questions?

2UW CSE 331 Spring 2022



Agenda

• HW9 Overview

• JSON

– Brief overview

– Helps share data between Java and JS.

• Fetch

– How your JS sends requests to the Java server.
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Homework 9 Overview

• Creating a new web GUI using React

– Display a map and draw paths between two points on the 

map.

– Similar to your React app in HW8 – but you may add more!

– Send requests to your Java server (new) to request building 

and path info.

• Creating a Java server as part of your previous HW5-7 code

– Receives requests from the React app to calculate 

paths/send data.

– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.
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The Map Lines Stack
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Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

“Can I have the webpage?”

“Here’s some HTML and 

JS”

MapLines

*Note: This is not Apache Spark



The Campus Paths Stack
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Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your TypeScript Code

<Map>

<button>

Other Components

“Can I have the webpage?”

“Here’s some HTML and 

JS”

“How do I go from CSE to 

CS2?”

“Here’s some JSON with 

your data.”

CampusPaths

*Note: This is not Apache Spark



Any Questions?

• Done:

– HW9 Basic Overview

• Up Next:

– JSON

– Fetch
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JSON

• We have a whole application written in Java so far:

– Reads CSV data, manages a Graph data structure with 

campus data, uses Dijkstra’s algorithm to find paths.

• We’re writing a whole application in JavaScript:

– React web app to create an interactive GUI for your users

• Even if we get them to communicate (discussed later), we need 

to make sure they “speak the same language”.

– JavaScript and Java store data very differently.

• JSON = JavaScript Object Notation

– Can convert JS Object → String, and String → JS Object

– Bonus: Strings are easy to send inside server 

requests/responses.
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JSON ↔ Java
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public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]      

{"Purple", "Gold"};

}

Java Object JSON String

• Use Gson (a library from Google) to 
convert between them.

– Tricky (but possible) to go from JSON String 
to Java Object, but we don’t need that for 
this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo();
String json = gson.toJson(sInfo);

{"name":"U of 

Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs 

II","isRainy":true,"website":"www.uw.e

du","colors":["Purple","Gold"]}



JSON ↔ JS
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let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of 

Washington","location":"Seattle","foun

ded":1861,"mascot":"Dubs 

II","isRainy":true,"website":"www.uw.e

du","colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)

• This means: if the server sent back a JSON String, it’d be easy to use 

the data inside of it – just turn it into a JS Object and read the fields out 

of the object.



JSON – Key Ideas

• Use Gson to turn Java objects containing the data into JSON 

before we send it back.

– The Java objects don’t have to be simple, like in the 

example, Gson can handle complicated structures.

• We can then turn the JSON string into a Javascript object so we 

can use the data (fetch can help us with that).
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Any Questions?

• Done:

– HW9 Basic Overview

– JSON

• Up Next:

– Fetch
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What is a Request?

• Recall from lecture:

– When you type a URL into your browser, it makes a GET 

request to that URL, the response to that request is the website 

itself (HTML, JS, etc..).

• A GET request says “Hey server, can I get some info about 

_____?”

– We’re going to make a request from inside Javascript to ask for 

data about paths on campus.

– There are other kinds of requests, but we’re just using GET. 
(It’s the default for fetch).

• Each “place” that a request can be sent is called an “endpoint.”

– Your Java server will provide multiple endpoints – one for each 

kind of request that your React app might want to make.

• Find a path, get building info, etc...
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Forming a Request
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• Basic request with no extra data: "http://localhost:4567/getSomeData"

– A request to the "/getSomeData" endpoint in the server at "localhost:4567"

– "localhost" just means “on this same computer”

– ":4567" specifies a port number – every computer has multiple ports so 

multiple things can be running at a given time.

• Sending extra information in a request is done with a query string:

– Add a "?", then a list of "key=value" pairs. Each pair is separated by "&".

– Query string might look like: "?start=CSE&end=KNE"

• Complete request looks like: 

http://localhost:4567/findPath?start=CSE&end=KNE

• Sends a “/findPath” request to the server at “localhost:4567”, and 

includes two pieces of extra information, named “start” and “end”.

• You don’t need to name your endpoints or query string parameters 

anything specific, the above is just an example.

Server Address: http://localhost:4567



Forming a Request
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http://localhost:4567/getSomeData

http://localhost:4567/findPath?start=CSE&end=KNE

http://washington.edu/about.....

Hostname Port* Endpoint

Query Params*

*Port and query params are technically optional

Server Address: http://localhost:4567



Servicing Requests

• Recall from lecture:

– We need some way to respond to these requests

– This is what we use our SparkServer for!

– For each “endpoint” we want, we need to define a route:
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Spark.get("/hello-world", new Route() {

@Override

public Object handle(Request request, Response response) 

throws Exception {

// we need to return our response

return "Hello, Spark!";

}

});



Requests and Spark Server Demo
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Running the Section Demo

• Like last time, download and unzip the files from the website.

• New > Project from Existing Sources…

– Choose the build.gradle file 

inside of the sec09-demo directory.
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Running the Section Demo

• Get the installation out of the way since it takes a while (have 

this install in the background while you check out the Spark 

demo!)

• In the IntelliJ terminal:

– cd src/main/react

– npm install

• Success! (Again, these warnings are expected and normal.)
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Starting up the Spark Server

• Start up the Spark Server by running the runSpark Gradle task.

• Alternatively, run the main method of
src/main/java/sparkDemo/SparkServer.java

Compile error? Make sure you’re using Java 11!

File > Project Structure > Project

Check that the SDK is correct!
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Starting up the Spark Server

• Your server is now running on http://localhost:4567

• These are not errors – the server just outputs info in red text.

• Let’s try sending a request to the server…

– Visit http://localhost:4567 in a browser
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Starting up the Spark Server

• We got a 404 Not Found Page.

Why is this?

• INFO spark.http.matching.MatcherFilter - The requested route [/] has 

not been mapped in Spark for Accept

• Our server doesn’t have an endpoint called “/”

• But our server does have other endpoints. Let’s examine the code…

– Open up src/main/java/sparkDemo/SparkServer.java

UW CSE 331 Spring 2022 22



Example 1:

Hello, World

Spark.get("/hello-world", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

// As a first example, let's just return

// a static string.

return "Hello, Spark!";

}

});
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Example 2:

Create Your Own Route!

• Create your own endpoint!

Spark.get("/your-endpoint-here", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

return "Your message here!";

}

});

• When you’re done, you’ll need to restart the server. Use the stop

button and re-run the runSpark Gradle task.

– Visit your newly-created endpoint!
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Example 3:

Query Parameters

Spark.get("/hello-someone", new Route() {

@Override

public Object handle(Request request,

Response response) throws Exception {

String personName = request.queryParams("person");

return "Hello, " + personName + "!";

}

});
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Example 4:

Parameter Error Handling

Spark.get("/hello-someone-with-error", new Route() {

...    

String personName = request.queryParams("person");

if (personName == null) { Spark.halt(400); }

return "Hello, " + personName + "!";

}

});
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Example 5:

Sending Back a Simple Java Object

Spark.get("/range", new Route() {

...

List<Integer> range = new ArrayList<>();

for (int i = start; i <= end; i++) {

range.add(i);

}

Gson gson = new Gson();

String jsonResponse = gson.toJson(range);

return jsonResponse;

}

});
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Example 5:

Sending Back a Simple Java Object

• Tip: Use the network tab to view requests and responses!
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Example 5:

Sending Back a Simple Java Object

• Use descriptive and informative error messages!

Spark.halt(400, "must have start and end");

• Limited freedom to

pick a status #!

– See the docs
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https://developer.mozilla.org/en-US/docs/Web/HTTP/Status


Example 6:

Sending Back a Complex Java Object
Spark.get("/range-info", new Route() {

...

// RangeInfo is a class with fields:

// start, end, range, primes, average

RangeInfo rangeInfo = new RangeInfo(start, end);

Gson gson = new Gson();

return gson.toJson(rangeInfo);

}

});

• The network tab also shows this!
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Fetch

• Used by JS to send requests to servers to ask for info.

– alternative to XmlHttpRequest

• Uses Promises:

– Promises capture the idea of “it’ll be finished later.”

– Asking a server for a response can be slow, so Promises 

allow the browser to keep working instead of stopping to 

wait. 

– Getting the data out is a little more complicated.

– Java has Promises too – called CompletableFuture

• Can use async/await syntax to deal with promises.
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Sending the Request in React

• The URL you pass to fetch() can include a query string if you 

need to send extra data.

• responsePromise is a Promise object

– Once the Promise “resolves,” it’ll hold whatever is sent back 

from the server.

• How do we get the data out of the Promise?

– We can await the promise’s resolution.

– await tells the browser that it can pause the currently-

executing function and go do other things. Once the promise 

resolves, it’ll resume where we left off.

– Prevents the browser from freezing while the request is 

happening (which can take some time to complete)
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let responsePromise = fetch("http://localhost:4567/findPath?start=CSE&end=KNE");



Getting Useful Data
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async sendRequest() {
let responsePromise = fetch("...");
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is 

pause-able”

Will eventually 

resolve to an 

actual JS object 

based on the 

JSON string.

Once we have 

the data, store it 

in a useful place.



Error Checking
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async sendRequest() {
try {

let response = await fetch("...");
if (!response.ok) {

alert("Error message!");
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert("Error message!");

}
}

Every response has 

a ‘status code’ (404 

= Not Found). This 

checks for

200-299 = OK

On a complete 

failure (e.g. server 

isn’t running) an 

error is thrown.

Make sure you 

create informative

and helpful error 

messages!



Fetch Demo
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Running the Fetch Demo

• Make sure your Spark Server is running (runSpark Gradle task)

• In the IntelliJ terminal:

– Make sure you’re in src/main/react

– npm start

• A browser window should open up automatically
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Example 7:

Fetch

App.tsx:

constructor(props: {}) {

super(props);

this.state = { requestResult: "NO REQUEST RESULT" };

}

render() {

return (

<div className="App">

<p>{this.state.requestResult}</p>

<button onClick={this.makeRequestLong}>

Make a Request

</button>

</div>

);

}
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Example 7:

Fetch
makeRequestLong = async () => {

try {

let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React");

let response = await responsePromise;

if (!response.ok) {

alert("Error! Expected: 200, Was: " + response.status);

return;

}

let textPromise = response.text();

let text = await textPromise;

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};
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Example 7:

Fetch
makeRequestLong = async () => {

try {

let responsePromise = fetch("http://localhost:4567/

hello-someone?person=React");

let response = await responsePromise;

...

};
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The type of this is 
Promise<Response>

await “resolves” a promise

(waits for the promise to be fulfilled)

The type of this is 
Response

Do NOT use https



Example 7:

Fetch
makeRequestLong = async () => {

...

if (!response.ok) {

alert("Error! Expected: 200, Was: " + response.status);

return;

}

...

};
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Stop the execution of this function if the response is bad.
Response objects have other fields too, such as:

• .headers

• .statusText

• .url

Check out the docs for more info on Response objects!

https://developer.mozilla.org/en-US/docs/Web/API/Response


Example 7:

Fetch
makeRequestLong = async () => {

...

let textPromise = response.text();

let text = await textPromise;

...

};
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This endpoint returns a 

string (text). If your endpoint 

returns a JSON string, use 
response.json() instead.Since we used .text(), 

the type of this is 
Promise<string>

Promise<string> 

resolves into string. 

text is of type string.



Example 7:

Fetch
makeRequestLong = async () => {

...

let text = await textPromise;

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};
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We update the state with 

the response from the 

server!

Handle errors gracefully and inform the user of an 

error. Most common sources of errors:

• Fetch URL is wrong

• Server is offline
• Using .json() if the response doesn’t contain 

valid JSON



Example 7:

Fetch

Recap:

• When we click the button, its onClick listener will call the 

callback function we passed in: this.makeRequestLong

• this.makeRequestLong sends a fetch request to our Spark 

Server: http://localhost:4567/hello-someone?person=React

• this.makeRequestLong receives a response from the server 

and updates App’s state

• React notices the state update 

and queues a re-render

• The <p> element is re-rendered

with the updated state!
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Queue a

re-render!



Example 8:

Fetch, but more compact
makeRequest = async () => {

try {

let response = await fetch("...");

if (!response.ok) {

alert("...");

return;

}

let text = await response.text();

this.setState({ requestResult: text });

} catch (e) {

alert("There was an error contacting the server.");

console.log(e);

}

};
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Reduced the number of 

temporary variables!



Things to Know

• Can only use the await keyword inside a function declared with the 

async keyword.

– async keyword means that a function can be “paused” while 

await-ing

• async functions automatically return a Promise that (will eventually) 

contain(s) their return value. 

– This means that if you need a return value from the function you 

declared as async, you’ll need to await the function call.

– But that means that the caller also needs to be async.

– Therefore: generally best to not have useful return values from 

async functions (in 331, there are lots of use cases outside of 

this course, but can get complicated fast).

– Instead of returning, consider calling setState to store the result 

and trigger an update.
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More Things to Know

• Error checking is important.

– If you forget, the error most likely will disappear without 

actually causing your program to explode.

– This is BAD! Silent errors can cause tricky bugs.

– Happens because errors don’t bubble outside of promises, 

and the async function you’re inside is effectively “inside” a 

promise.

– Means that if you don’t catch an exception, it’ll just disappear 

as soon as your function ends.
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More More Things to Know

• The return value of await response.json() will be any

– As we know, this is dangerous! (No TypeScript checks)

• To solve, we create an interface describing what the server will 
respond with (e.g. a Path) and cast the value to that type:

interface Path { ... }

const parsed: Path = await response.json() as Path;

• Note: This does not check that the value actually has this type

– If the server sends back something different, could crash later

– A true solution would check the object before casting

• Can get pretty complicated – not required for HW9

• If you're curious – libraries like io-ts can help with this
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Any Questions?

• Done:

– HW9 Overview

– JSON

– Fetch
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Wrap-Up

• Don’t forget:

– HW8 due today (Thur. 5/26 @ 11:00pm)

– HW9 due next week (Fri. 6/3 @ 11:00pm)

• Use your resources!

– Office Hours

– Links from HW specs

– React Tips & Tricks Handout (See “Resources” page on the 

course website)

– Other students (remember academic honesty policies: can’t 

share/show/copy code, but discussion is great!)

– Google (carefully, always fully understand code you use)
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