CSE 331
Software Design & Implementation

Spring 2022
Section 1 – Code Reasoning
Administrivia

• HW1 due next Wednesday.
 – Last two questions have loops: covered tomorrow in lecture.

• Any questions before we dive in?
 – What are the most interesting/confusing/puzzling things so far in the course?
Agenda

• Introductions?

• Review logical reasoning about code with Floyd Logic

• Practice both forward and backward modes
 – Just assignment, conditional (“if-then-else”), and sequence
 – Logical rules from yesterday’s lecture/notes

• Review logical strength of assertions (weaker vs. stronger)

• Practice determining stronger/weaker assertions
Why reason about code?

- Prove that code is correct
- Understand why code is correct
- Diagnose why/how code is not correct
- Specify code behavior
Logical reasoning about code

• Determine facts that hold of program state between statements
 – “Fact” ~ assertion (logical formula over program state, informally “value(s) of some/all program variables)
 – Driven by assumption (precondition) or goal (postcondition)

• Forward reasoning
 – What facts follow from initial assumptions?
 – Go from precondition to postcondition

• Backward reasoning
 – What facts need to be true to reach a goal?
 – Go from postcondition to precondition
Hoare Logic: Validity by Reasoning

• Checking validity of $\{\{P\}\} \ S \ \{Q\}\$
 – Valid iff, starting from any state satisfying P, executing S results in a state satisfying Q

• Forward reasoning:
 – Reason from P to strongest postcondition $\{\{P\}\} \ S \ \{R\}\$
 – Check that R implies Q (i.e., Q is weaker)

• Backward reasoning:
 – Reason from Q to get weakest precondition $\{\{R\}\} \ S \ \{Q\}\$
 – Check that P implies R (i.e., P is stronger)
Implication (=>)

• Logic formulas with and (&, &&, or \(\wedge\)), or (|, ||, or \(\vee\)) and not (! or \(\neg\)) have the same meaning they do in programs.

• Implication might be a bit new, but the basic idea is pretty simple. Implication \(p \Rightarrow q\) is true as long as \(q\) is always true whenever \(p\) is.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \Rightarrow q)</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Assignment Statements

- Reasoning about $x = y$;

- Forward reasoning:
 - add “$x = y$” as a new fact
 - (also rewrite any existing references to “x” to use new value)

- Backward reasoning:
 - replace all instances of “x” in the postcondition with “y”
Conditionals, more closely

Forward reasoning

\[
\begin{align*}
\{\{P\}\} \\
\text{if } (b) \\
\quad \{\{P \land b\}\} \\
S_1 \\
\quad \{\{Q_1\}\} \\
\text{else} \\
\quad \{\{P \land \lnot b\}\} \\
S_2 \\
\quad \{\{Q_2\}\} \\
\{\{Q_1 \lor Q_2\}\}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{\{(b \land P_1) \lor (\lnot b \land P_2)\}\} \\
\text{if } (b) \\
\quad \{\{P_1\}\} \\
S_1 \\
\quad \{\{Q\}\} \\
\text{else} \\
\quad \{\{P_2\}\} \\
S_2 \\
\quad \{\{Q\}\}
\end{align*}
\]
Weaker vs. stronger

Formal definition:
• If $P \Rightarrow Q$, then
 – Q is weaker than P
 – P is stronger than Q

Intuitive definition:
• “Weak” means unrestrictive; a weaker assertion has a larger set of possible program states (e.g., $x \neq 0$)
• “Strong” means restrictive; a stronger assertion has a smaller set of possible program states (e.g., $x = 1$ or $x > 0$ are both stronger than $x \neq 0$).
Worksheet

• Take ~10 minutes to get where you can

• Find a partner and work with them

• Let me know if you feel stuck

• We’ll walk through some solutions afterwards
Worksheet – problem 2

```plaintext
{{ true }}
if (x>0) {
    {{ x > 0 }}
    y = 2*x;
    {{ x > 0 ∧ y = 2x }}
} else {
    {{ x <= 0 }}
    y = -2*x;
    {{ x <= 0 ∧ y = -2x }}
}

{{ (x > 0 ∧ y = 2x) ∨ (x <= 0 ∧ y = -2x) }}
⇒ {{ y = 2|x| }}
```
Worksheet – problem 4

\[\{\{ y > 15 \lor (y \leq 5 \land y + z > 17) \}\}\]

if \(y > 5 \) {
 \{\{ y > 15 \}\}\n \begin{align*}
 x &= y + 2 \\
 \{\{ x > 17 \}\}\n \end{align*}
} else {
 \{\{ y + z > 17 \}\}\n x = y + z;
 \{\{ x > 17 \}\}\n}\}
Worksheet – problem 6 (forward)

```plaintext
{{ true }}
if (x < y) {
    {{ true ∧ x < y }}
    m = x;
    {{ x < y ∧ m = x }}
} else {
    {{ true ∧ x >= y }}
    m = y;
    {{ x >= y ∧ m = y }}
}
{{ (x < y ∧ m = x) ∨ (x >= y ∧ m = y) }}
⇒ {{ m = min(x, y) }}
```
{{ true }} ⇔
{{ (x <= y ∧ x < y) ∨ (y <= x ∧ x >= y) }}

if (x < y) {
 {{ x = min(x, y) }} ⇔ {{ x <= y }}
 m = x;
 {{ m = min(x, y) }}
}

else {
 {{ y = min(x, y) }} ⇔ {{ x >= y }}
 m = y;
 {{ m = min(x, y) }}
}

{{ m = min(x, y) }}
Worksheet – problem 7

{{ y > 23 }} is stronger than {{ y >= 23 }}

{{ y = 23 }} is stronger than {{ y >= 23 }}

{{ y < 0.23 }} is weaker than {{ y < 0.00023 }}

{{ x = y * z }} is incomparable with {{ y = x / z }}

{{ is_prime(y) }} is incomparable with {{ is_odd(y) }}
Worksheet – problem 7

{{{ y > 23 }}}} is stronger than {{{ y >= 23 }}}

{{{ y = 23 }}}

{{{ y < 0.23 }}}} is weaker than {{{ y < 0.00023 }}}

{{{ x = y * z }}}

{{{ is_prime(y) }}}} is incomparable with {{{ is_odd(y) }}}}
Worksheet – problem 7

\[
\begin{align*}
\{ y > 23 \} & \quad \text{is stronger than} \quad \{ y \geq 23 \} \\
\{ y = 23 \} & \quad \text{is stronger than} \quad \{ y \geq 23 \} \\
\{ y < 0.23 \} & \quad \quad \quad \quad \quad \text{is weaker than} \quad \{ y < 0.00023 \} \\
\{ x = y \ast z \} & \quad \text{is incomparable with} \quad \{ y = x \div z \} \\
\{ \text{is_prime}(y) \} & \quad \text{is incomparable with} \quad \{ \text{is_odd}(y) \}
\end{align*}
\]
Worksheet – problem 7

{{ y > 23 }} is stronger than {{ y >= 23 }}

{{ y = 23 }} is stronger than {{ y >= 23 }}

{{ y < 0.23 }} is weaker than {{ y < 0.00023 }}

{{ x = y * z }} is incomparable with {{ y = x / z }}

{{ is_prime(y) }} is incomparable with {{ is_odd(y) }}
Worksheet – problem 7

\{ y > 23 \} \quad \text{is stronger than} \quad \{ y \geq 23 \}

\{ y = 23 \} \quad \text{is stronger than} \quad \{ y \geq 23 \}

\{ y < 0.23 \} \quad \text{is weaker than} \quad \{ y < 0.00023 \}

\{ x = y \ast z \} \quad \text{is incomparable with} \quad \{ y = x \slash z \}

\{ \text{is_prime}(y) \} \quad \text{with} \quad \{ \text{is_odd}(y) \}
Worksheet – problem 7

\{\{ y > 23 \}\} is stronger than \{\{ y \geq 23 \}\}

\{\{ y = 23 \}\} is stronger than \{\{ y \geq 23 \}\}

\{\{ y < 0.23 \}\} is weaker than \{\{ y < 0.00023 \}\}

\{\{ x = y \times z \}\} is incomparable with \{\{ y = x / z \}\}

\{\{ \text{is_prime}(y) \}\} is incomparable with \{\{ \text{is_odd}(y) \}\}
Questions?

• What is the most surprising thing about this?

• What is the most confusing thing?

• What will need a bit more thinking to digest?