
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022
Debugging

REACT

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!

CSE 331 Spring 2022 3

UI is still
in one file

UI Modularity

• Key idea 1: break the visible UI into pieces that can
become separate components

CSE 331 Spring 2022 4

SideBar

TitleBar

MainBody

UI Modularity

• Key idea 2: allow each piece to implement parts of
itself inside of sub-components

CSE 331 Spring 2022 5

SideBar

TitleBar

MainBody

Component Tree

• App
• Title Bar
• Side Bar
• Main Body

– Child 1
– …
– Child N

Child N

Child 1

App

UI Modularity

• Key ideas: break the UI into separate components
corresponding to meaningful parts of the UI
– each component should know how to turn itself

into GUI components (panels, buttons, etc.)
– each component uses the MVC pattern

• Problem: How do all the pieces get put together?
– the GUI must be one tree of components

CSE 331 Spring 2022 6

Final App Version

register-react2/…

CSE 331 Spring 2022 7

Structure of Example React App

8

Quarter
PickerApp

Class
Picker

State:
– quarter

Props:
– quarter

State:
– classes

quarter

React State

• Reach component can have its own events

• Updating data in a parent:
– child fires an event to the parent’s listener
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

CSE 331 Spring 2022 9

Structure of Example React App

10

Quarter
PickerApp

Class
Picker

State:
– quarter

onPick

Props:
– quarter

State:
– classes

quarter

onBack

Splitting the Model

• State should exist in the lowest common parent of
all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props

CSE 331 Spring 2022 11

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!

CSE 331 Spring 2022 12

Event Listener Gotchas

• Recall the issue with “this” in JavaScript.
– do not write onClick={this.handleClick}

• Three ways to do this properly:

1. onClick={(e) => this.handleClick(e)}

2. onClick={this.handleClick.bind(this)}

3. Make handleClick a field rather than a method:

handleClick: (e) => { … };

Then this.handleClick is okay.

CSE 331 Spring 2022 13

React setState Gotchas

• setState does not update state instantly:

// this.state.x is 2
this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates

CSE 331 Spring 2022 14

Other React Gotchas

• Model must store all data necessary to generate the
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored
in the model
– e.g., every text field’s value must be part of some

React component’s state
– render produces

<input type=“text” value={…}>

CSE 331 Spring 2022 15

Other React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will
be hard to catch!

CSE 331 Spring 2022 16

React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

CSE 331 Spring 2022 17

DEBUGGING

A Bug’s Life

defect – mistake committed by a human

error – incorrect computation

failure – visible error: program violates its specification

Debugging starts when a failure is observed
Unit testing
Integration testing
In the field

Goal of debugging is to go from failure back to defect

19CSE 331 Spring 2022

How to Avoid Debugging
Levels of defense against painful debugging:

1. Make errors impossible
– examples: Java prevents type errors, memory corruption

Python prevents key mutation

2. Don’t introduce defects
– “get things right the first time” (by reasoning & unit testing)

3. Make errors immediately visible (often by defensive programming)
– examples: assertions, checkRep
– reduce distance from error to failure

21CSE 331 Spring 2022

(subtle bugs like key mutations are hard to find
because of the distance between error and failure)

First defense: Impossible by design
In the language

– Java prevents type mismatches, memory overwrite bugs;
guaranteed sizes of numeric types, …

In the protocols/libraries/modules
– TCP/IP guarantees data is not reordered
– BigInteger guarantees there is no overflow

In self-imposed conventions
– immutable data structure guarantees behavioral equality
– finally block can prevent a resource leak
Caution: You must maintain discipline

22CSE 331 Spring 2022

Second defense: Correctness
Get things right the first time

– think before you code (don’t code before you think!)
– if you're making lots of easy-to-find defects,

you're probably also making hard-to-find defects

Especially important when debugging is going to be hard
– concurrency, real-time environment, no access to customer

environment, etc.

The key techniques are everything we have been learning:
– forward & backward reasoning
– clear and complete specs
– strive to write simpler software

23CSE 331 Spring 2022

Strive for simplicity

“There are two ways of constructing a software
design:

One way is to make it so simple that there
are obviously no deficiencies, and
the other way is to make it so complicated
that there are no obvious deficiencies.

The first method is far more difficult.”

“Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition,
not smart enough to debug it.”

Sir Anthony Hoare

Brian Kernighan

24CSE 331 Spring 2022

Second defense: Correctness

Find errors by testing before you check in the code:

Unit testing: when you test a module in isolation, any failure is
due to a defect in that unit (or the test driver)

Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed (or the new code is
triggering a bug that hadn’t been observed before)

Test early and often. More tests is almost never a bad thing.

25CSE 331 Spring 2022

Third defense: Immediate visibility

If we can't prevent errors, we can try to spot them early

asserts (e.g., in checkRep): check at runtime that the program
is in the state that we are expecting.

Cause a failure that is closer to the error

26CSE 331 Spring 2022

Benefits of immediate visibility

Failure is likely to be closer to the defect
– failure can occur far from the mistake that caused it
– immediate visibility reduces the search time to find the defect

Defect is less likely to have infected other parts of the program
– the longer we wait, the more code we’ll likely have to change

Don’t program in ways that hide errors
– this lengthens distance between defect and failure

27CSE 331 Spring 2022

Last resort: debugging

Defects happen
– people are imperfect
– industry average (?): 10 defects per 1000 lines of code

Defects are sometimes not immediately clear from the failure
That means…

31CSE 331 Spring 2022

Basic Bug Removal

Work through the following steps:

step 1 – Clarify symptom (simplify input), create “minimal” test
step 2 – Localize and understand cause
step 3 – Fix the defect
step 4 – Rerun all tests, old and new

32CSE 331 Spring 2022

The bug removal process

step 1: find (small) repeatable test case that produces the failure
– smaller test case will make step 2 easier
– do not start step 2 until you have a repeatable test

step 2: narrow down location and cause
– loop: (a) study the data (b) hypothesize (c) experiment
– experiments often involve changing the code
– do not start step 3 until you understand the cause

step 3: fix the defect
– is it a simple typo or a design flaw?
– does it occur elsewhere in the code?

step 4: run all the tests (including the new one)
– is this failure fixed? are any other new failures introduced?

33CSE 331 Spring 2022

Debugging and the scientific method

• Debugging should be systematic
– carefully decide what to do

• don’t flail about randomly!
– may help to keep a record of what you tried
– don’t get sucked into fruitless avenues

• Use an iterative scientific process:

34CSE 331 Spring 2022

Formulate a hypothesis

Design an experiment

Perform an experiment

Interpret results

Example

//returns true iff sub is a substring of full
//(i.e. iff there exists A,B such that full=A+sub+B)
boolean contains(String full, String sub);

User bug report:
It can't find the string "very happy" within:

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all."

Poor responses:
– See accented characters, panic about not knowing about

Unicode, begin unorganized web searches and inserting poorly
understood library calls, …

– Start tracing the execution of this example
Better response: simplify/clarify the symptom…

35CSE 331 Spring 2022

Reducing input size

Find a simple test case by divide-and-conquer

Pare test down:
Can not find "very happy" within

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all."
"I am very very happy to see you all."
"very very happy"

Can find "very happy" within
"very happy"

Can not find "ab" within "aab"

36CSE 331 Spring 2022

General strategy: simplify

Find simplest input that will provoke failure
– usually not the input that revealed existence of the defect

Start with data that revealed the defect
– keep paring it down (binary search can help!)
– sometimes leads directly to an understanding of the cause

When not dealing with just one method call:
– “test input” is the set of steps that reliably trigger the failure
– same basic idea

37CSE 331 Spring 2022

Localizing a defect

Sometimes you can take advantage of modularity
– start with everything, take away pieces until failure goes away
– start with nothing, add pieces back in until failure appears

Binary search speeds up this process too
– error happens somewhere between first and last statement
– do binary search on that ordered set of statements

• is the state correct after the middle statement?

38CSE 331 Spring 2022

Binary search on buggy code
public class MotionDetector {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate

result
at half-way point

39CSE 331 Spring 2022

Binary search on buggy code
public class MotionDetector {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate

result
at half-way point

40CSE 331 Spring 2022

Detecting Bugs in the Real World

Real systems
– large and complex
– collection of modules, written by multiple people
– complex input
– many external interactions
– non-deterministic

Replication can be an issue
– infrequent failure (the worst)
– instrumentation eliminates the failure (the worst of the worst)

Defects cross abstraction barriers
Large time lag from corruption (error) to detection (failure)

41CSE 331 Spring 2022

Heisenbugs

In a sequential, deterministic program, failure is repeatable
But the real world is not that nice…

– continuous input/environment changes
– concurrency and parallelism
– failure occurs randomly

• literally depends on results of random-number generation

Common for debugging because...
– these are most likely bugs to sneak past reasoning & testing

Bugs hard to reproduce when:
– use of debugger or assertions makes failure goes away

• due to timing or assertions having side-effects
– only happens when under heavy load
– only happens once in a while

42CSE 331 Spring 2022

Debugging In Harsh Environments

Failure is non-deterministic,
difficult to reproduce

Can’t print or use debugger

Can’t change timing of
program (or defect/failure
depends on timing)

Such bugs are more
common when users are
your testers!

43CSE 331 Spring 2022

More Tricks for Hard Bugs

Rebuild system from scratch
– bug could be in your build system or persistent data structures

Make sure that you have correct source code
– check out fresh copy from repository; recompile everything

Explain the problem to a friend (or to a rubber duck)
– The Pragmatic Programmer calls this “rubber ducking”

Make sure it is a bug
– program may be working correctly!

45CSE 331 Spring 2022

More Tricks for Hard Bugs

Rebuild system from scratch
– bug could be in your build system or persistent data structures

Explain the problem to a friend (or to a rubber duck)
– The Pragmatic Programmer calls this “rubber ducking”

Make sure that you have correct source code
– check out fresh copy from repository; recompile everything

Make sure it is a bug
– program may be working correctly!

And things we already know:

– minimize input required to exercise bug (exhibit failure)
– add more checks to the program
– add more logging

46CSE 331 Spring 2022

Where is the defect?
The defect is not where you think it is (or else you’d have found it)

– ask yourself where it can not be; explain why

Look for simple easy-to-overlook mistakes first, e.g.,
– reversed order of arguments:

Collections.copy(src, dest);
– spelling of identifiers: int hashcode()

@Override can help catch method name typos
– same object vs. equal: a == b versus a.equals(b)
– deep vs. shallow copy

47CSE 331 Spring 2022

When the going gets tough

Reconsider assumptions
– e.g., has the OS changed? Is there room on the hard drive?

Is it a leap year? 2 full moons in the month?
– debug the code, not the comments

• ensure that comments and specs describe the code
Start documenting your system

– gives a fresh angle, and highlights area of confusion
Get help

– we all develop blind spots
– explaining the problem often helps (even to rubber duck)

Walk away
– sleep! often you can’t see the problem because you’re too tired
– one good reason to start early

48CSE 331 Spring 2022

Summary

• Debugging occurs when tools & inspection fail to catch a bug

• Debugging is the search from a failure back to the defect
– defect = the actual bug, somewhere in the code
– failure = bad effects from the bug becoming visible to users

(crash, error message, incorrect result, etc.)

• Debugging can be hours (or even days!) of frustrating work
– bugs that get past tools & inspection are usually the most subtle

CSE 331 Winter 2019 49

