
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

Modern Web GUIs

Administrivia

• Section tomorrow should be very useful
– focus will be on homework prep as usual

CSE 331 Spring 2022 2

Structure of a GUI Application

• Core parts of these applications:
– stores some data for the user
– displays that data for the user
– allows the user to change the data

• causes the app to re-display

• Library provides a set of components we can use

3CSE 331 Spring 2022

Structure of a GUI Application

4CSE 331 Spring 2022

Model

GUI
Components?

data and invariants presentation
user interaction

View /
Controller

(provided by library)

Structure of a GUI Application

5CSE 331 Spring 2022

Model
Listeners

GUI
Components

update

eventchange

Renderquery

View / Controller sits in between model and GUI components
– performs two key tasks…

view / controller

Structure of a GUI Application

6CSE 331 Spring 2022

Model
Listeners

GUI
Components

update

eventchange

Renderquery

draw

View / Controller sits in between model and GUI components
1. Renders (“draws”) the model for the user via components

Structure of a GUI Application

7CSE 331 Spring 2022

Model
Listeners

GUI
Components

update

eventchange

Renderquery

update

View / Controller sits in between model and GUI components
1. Renders (“draws”) the model for the user via components
2. Updates the model based on user interaction

– causes the app to draw again

JS Example

register-js/index.js

CSE 331 Spring 2022 8

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– HTML is created in strings!
– (and other issues not mentioned so far…)

CSE 331 Spring 2022 9

ES6

From last time: Fake Classes

• JavaScript started as an OO language w/out classes

• Can do some of what we need already:

let obj = {f: (x) => x + 1};
console.log(obj.f(2)); // 3

• Use “this” to read fields of obj in obj.f

CSE 331 Spring 2022 11

Classes

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}

let f = new Foo(3); // {secretMethod: …, secretVal: …}

console.log(f.secretMethod(5)); // 8

CSE 331 Spring 2022 12

Classes

• new Foo creates an object already containing methods
– also calls the constructor

• Still has the same issue with this:

class Foo { … }

let f = new Foo(3);
let s = f.secretMethod;
console.log(s(5)); // NaN

let t = (x) => f.secretMethod(x);
console.log(t(5)); // 8

CSE 331 Spring 2022 13

JS vs Java Classes

• JS method signatures are just the name
– JS objects are just HashMaps
– field names are the keys

• Java methods signatures are name + arg types
– e.g., avg(int,int)

• JS has only one method with a given name
– language allows different numbers of arguments

• missing arguments are undefined

– can strengthen a spec by accepting a wider set of
possible input types

CSE 331 Spring 2022 14

obj.avg(3, 5)

Modules

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { … }

• Others can import using:

import { average } from ‘./filename’;

– file extension is sometimes not included

CSE 331 Spring 2022 15

ES6 Example

register-js2/…

CSE 331 Spring 2022 16

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!
– (and other issues not mentioned so far…)

CSE 331 Spring 2022 17

UI is still
in one file

TYPESCRIPT

TypeScript

• Adds type constraints to the code:
– arguments and variables

let x: number = 0;

– fields of classes (now declared)
quarter: string;

• tsc performs type checking
– outputs version with type annotations removed

CSE 331 Spring 2022 19

TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, number]
– unions: string | number
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– abbreviations: type Point = [number, number]
– …

CSE 331 Spring 2022 20

Simple Examples

points1.ts
points2.ts

21CSE 331 Spring 2022

UI Example

register-ts/…

CSE 331 Spring 2022 22

TypeScript

• Type system is unsound
– can’t promise to find prevent all errors
– can be turned off at any point with any types

•x as Foo is an unchecked cast to Foo
•x! casts to non-null version of the type (useful!)

• Full description of the language at
typescriptlang.org

CSE 331 Spring 2022 23

JSX

JSX

• Fix another problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression

CSE 331 Spring 2022 25

JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className=“..”, htmlFor=“..”, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div

CSE 331 Spring 2022 26

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!

CSE 331 Spring 2022 27

UI is still
in one file

REACT

React

• Improve modularity by allowing custom tags

let app = (
<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Spring 2022 29

React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Spring 2022 30

React Example

register-react/…

CSE 331 Spring 2022 31

React Components

• Each React component renders into HTML elements

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• React components corresponds to portions of the document
– TitleBar is one subtree
– EditPane is another subtree
– App contains the two of those

CSE 331 Spring 2022 32

React State

• Last example was not dynamic
– there was no model!

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the live HTML to match
– will only update the parts that changed

CSE 331 Spring 2022 33

Structure of GUI Application

34CSE 331 Spring 2022

Model
Listeners

GUI
Components

update

eventchange

Renderquery

Each React component renders into HTML elements
Each React component includes
• part of the model
• part of the view (rendering of that data into components)
• part of the controller (listeners for interaction with that view)

Structure of Example React App

35

Quarter
PickerApp

Class
Picker

State:
– quarter

Props:
– quarter

State:
– classes

quarter

Example 5

register-react2/…

CSE 331 Spring 2022 36

React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

CSE 331 Spring 2022 37

Structure of Example React App

38

Quarter
PickerApp

Class
Picker

State:
– quarter

onPick

Props:
– quarter

State:
– classes

quarter

onBack

Splitting the Model

• State should exist in the lowest common parent of
all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props

CSE 331 Spring 2022 39

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!

CSE 331 Spring 2022 40

Event Listener Gotchas

• Recall the issue with “this” in JavaScript.
– do not write onClick={this.handleClick}

• Three ways to do this properly:

1. onClick={(e) => this.handleClick(e)}

2. onClick={this.handleClick.bind(this)}

3. Make handleClick a field rather than a method:

handleClick: (e) => { … };

Then this.handleClick is okay.

CSE 331 Spring 2022 41

React setState Gotchas

• setState does not update state instantly:

// this.state.x is 2
this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates

CSE 331 Spring 2022 42

Other React Gotchas

• Model must store all data necessary to generate the
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored
in the model
– e.g., every text field’s value must be part of some

React component’s state
– render produces

<input type=“text” value={…}>

CSE 331 Spring 2022 43

Other React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will
be hard to catch!

CSE 331 Spring 2022 44

React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast

CSE 331 Spring 2022 45

React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

CSE 331 Spring 2022 46

