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Administrivia

• Section tomorrow should be very useful
– focus will be on homework prep as usual
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Structure of a GUI Application

• Core parts of these applications:
– stores some data for the user
– displays that data for the user
– allows the user to change the data

• causes the app to re-display

• Library provides a set of components we can use
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Structure of a GUI Application
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Structure of a GUI Application
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View / Controller sits in between model and GUI components
– performs two key tasks…

view / controller



Structure of a GUI Application
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View / Controller sits in between model and GUI components
1. Renders (“draws”) the model for the user via components



Structure of a GUI Application
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View / Controller sits in between model and GUI components
1. Renders (“draws”) the model for the user via components
2. Updates the model based on user interaction

– causes the app to draw again



JS Example

register-js/index.js
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Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– HTML is created in strings!
– (and other issues not mentioned so far…)
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ES6



From last time: Fake Classes

• JavaScript started as an OO language w/out classes

• Can do some of what we need already:

let obj = {f: (x) => x + 1};
console.log(obj.f(2));  // 3

• Use “this” to read fields of obj in obj.f
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Classes

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}

let f = new Foo(3);   // {secretMethod: …, secretVal: …}

console.log(f.secretMethod(5));  // 8
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Classes

• new Foo creates an object already containing methods
– also calls the constructor

• Still has the same issue with this:

class Foo { … }

let f = new Foo(3);
let s = f.secretMethod;
console.log(s(5));               // NaN

let t = (x) => f.secretMethod(x);
console.log(t(5));               // 8
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JS vs Java Classes

• JS method signatures are just the name
– JS objects are just HashMaps
– field names are the keys

• Java methods signatures are name + arg types
– e.g., avg(int,int)

• JS has only one method with a given name
– language allows different numbers of arguments

• missing arguments are undefined

– can strengthen a spec by accepting a wider set of 
possible input types
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Modules

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { … }

• Others can import using:

import { average } from ‘./filename’;

– file extension is sometimes not included
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ES6 Example

register-js2/…
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Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!
– (and other issues not mentioned so far…)
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TYPESCRIPT



TypeScript

• Adds type constraints to the code:
– arguments and variables

let x: number = 0;

– fields of classes (now declared)
quarter: string;

• tsc performs type checking
– outputs version with type annotations removed
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TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, number]
– unions: string | number
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– abbreviations: type Point = [number, number]
– …
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Simple Examples

points1.ts
points2.ts
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UI Example

register-ts/…
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TypeScript

• Type system is unsound
– can’t promise to find prevent all errors
– can be turned off at any point with any types

•x as Foo is an unchecked cast to Foo
•x! casts to non-null version of the type (useful!)

• Full description of the language at 
typescriptlang.org
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JSX



JSX

• Fix another problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression
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JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className=“..”, htmlFor=“..”, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div
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Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!
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REACT



React

• Improve modularity by allowing custom tags

let app = (
<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions
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React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …
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React Example

register-react/…
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React Components

• Each React component renders into HTML elements

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• React components corresponds to portions of the document
– TitleBar is one subtree
– EditPane is another subtree
– App contains the two of those
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React State

• Last example was not dynamic
– there was no model!

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the live HTML to match
– will only update the parts that changed
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Structure of GUI Application
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Each React component renders into HTML elements
Each React component includes
• part of the model
• part of the view (rendering of that data into components)
• part of the controller (listeners for interaction with that view)



Structure of Example React App
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Example 5

register-react2/…
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React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props
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Structure of Example React App
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Splitting the Model

• State should exist in the lowest common parent of 
all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props
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Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!
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Event Listener Gotchas

• Recall the issue with “this” in JavaScript.
– do not write onClick={this.handleClick}

• Three ways to do this properly:

1. onClick={(e) => this.handleClick(e)}

2. onClick={this.handleClick.bind(this)}

3. Make handleClick a field rather than a method:

handleClick: (e) => { … };

Then this.handleClick is okay.
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React setState Gotchas

• setState does not update state instantly:

// this.state.x is 2
this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
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Other React Gotchas

• Model must store all data necessary to generate the 
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored 
in the model
– e.g., every text field’s value must be part of some 

React component’s state
– render produces

<input type=“text” value={…}>
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Other React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will 
be hard to catch!
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React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast
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React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)
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