CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022
User Interfaces & Event-Driven Programs

Administrivia

« HWY out now
— has a lot of things to do
— start early!

CSE 331 Spring 2022

Graphical User Interfaces (GUIs)

« Large and important class of event-driven programs
— walits for user-interaction events
— mouse clicks, button presses, etc.

« Java, Android, Web, etc. provide libraries to write these
— each of these use callbacks & events

— examples of “event-driven programs”

* Using these libraries decreases bugs
— also gives users a familiar experience

CSE 331 Spring 2022

GUI terminology

window: A first-class citizen of the graphical desktop
— also called a top-level container
— Examples: frame (window), dialog box

component. A GUI widget that resides in a window
— called controls in many other languages
— Examples: button, text box, label

container. A component that hosts (holds) & lays out components
— Examples: frame, panel, box

@ Convert Celsius to Fahrenheit |9 [=] B3

JTextField —» Rdl Celsing -&

JLabel

JButton —»= Convert... Fahrenheit

CSE 331 Spring 2022

More components...

JButton JCheckBox JRadioBox JLabel
oK [v] Check ® Radio a
Image and Text
JTextField JSlider JToolBar
y % Frames Per Second Text-Only Label
ol v
10 20
JComboBox JList JMenuBar, JMenu, JMenultem
||Pio 'I January A Another Menu
B S Lol
March
April = {4 Both text and icon
@® A radio button menu item
[J A check box menu item
A submenu >
JColorChooser JFileChooser JTable JTree
First Name | Last Name | Favorite F I Music
C: Jeff Dinkins @ (] Classical
' J Look in: ca Ewan Dinkins e (3 Besthoven
1| If B == © [Brahms
| I 5) 1 If Amy Fowler
| | If] ib - 4 ©- [Mozart
TR !I emacsil Hania Gajewska e Jaz
3 host-news Navid GRran ©-] Rock

™ iava

This lecture

» Brief survey of Desktop, Mobile, and Web
— discuss how each handles key issues
— (no need to memorize anything)

 Next lectures

— go deeper into languages used for Web apps
— improved Ul libraries available for Web apps

CSE 331 Spring 2022

GUI Libraries

» Core parts of these applications:
— stores some data for the user
— displays that data for the user

— allows the user to change the data
« causes the app to re-display

« Early apps required a lot of code to implement these

« More recent improvements have made this easier
— highly valuable

« your time is important
— less code (usually) means fewer bugs

CSE 331 Spring 2022

GUI Libraries

« AWT & Swing are the native Java libraries for writing GUIs
— Android apps are also GUIs and written in Java

» Core parts of these applications:
— stores some data for the user
— displays that data for the user
— allows the user to change the data
e causes the app to re-display

« Library helps with the latter two parts
— components used to display data

— components allow listeners that are notified of interaction

CSE 331 Spring 2022

AWT / Swing Example 1

SimpleFieldDemo.java

CSE 331 Spring 2022

Containers and layout

« Container needs to position (lay out) the child components

* You need to tell it how you want them arranged

* In AWT / Swing, each container has a layout manager

[%% BorderlLayout O] x| E&E GridLayout
Button 1 Button 1 2
Button 3 2 Button 5 Button 3 Long-Named Button 4
Long-Named Button 4 Button 5
Button 1 2 Button 3 Long-Named Button 4 Button 5
Eg% BoxLayout O] x| g’; GridBagl ayout O] x|
Button 1 Button1 | 2 | Button3
2
Button 3 Long-Named Button 4
Long-Named Button 4
Button 5 Button 5

10

AWT / Swing Examples

« Default is a flow layout
— components placed next to each other
— wrap around when out of space on the line

« Can change to a 2 x 2 grid layout

CSE 331 Spring 2022

11

AWT / Swing Example 2

SimpleFieldDemoZ2.java

CSE 331 Spring 2022

12

AWT / Swing Examples

 Does not look natural

* Instead try 2 rows (2 x 1 grid) and flow layout within the rows

Panel (2x2 grid) — Panel (2x1 grid)
— field 1 Panel (flow)
— button 1 | {field 1|
—_field 2 | —| button 1 |
_l button 2 I Panel (flow)
— field 2 |

— button 2 |

AWT / Swing Example 3

SimpleFieldDemo3.java

CSE 331 Spring 2022

14

Events in GUI Libraries

Most of the GUI widgets can generate events
— button clicks, menu picks, key press, etc.

Add a listener to be called back when those events occur
— component promises to call you in those circumstances
— passed an event object that provides info about the event

More examples of “callbacks” coming later...

CSE 331 Spring 2022

15

Achievement unlocked: Callbacks

Callback: “Code” provided by client to be used by library
* In JS etc., pass a function as an argument
« In Java, pass an object with the “code” in a method

Examples: HashMap calls its client's hashCode, equals

Synchronous callbacks:
« Useful when library needs the callback result immediately

Asynchronous callbacks:
* Register to indicate interest and where to call back

« Useful when the callback should be performed later, when
some interesting event occurs

CSE 331 Spring 2022 16

Event listeners / handlers

Event listeners must implement the proper interface. AWT/Swing:
KeyListener — handle key press

ActionListener — handle button press
MouseListener — handle mouse clicks
MouseMotionListener — handle mouse move/drag

When an event occurs

— the appropriate method specified in the interface is called:
actionPerformed, keyPressed, mouseClicked,
mouseDragged, ...

— an event object is passed to the listener method

Interfaces are different in Android but all conceptually the same

CSE 331 Spring 2022 17

Android similarities

 Events and listeners work in the same manner

Button btn = ...;
btn.setOnClickListener(new MyClickListener());

public class My(ClickListner
implements ClickListener {
@0verride
public void onClick(View v) {
Log.d(“My Button”, “You pressed it”);
3
1

CSE 331 Spring 2022 18

Event objects

GUI event is represented by an event object
— passes information often needed by the handler

In AWT/Swing, the superclass is AWTEvent. Some subclasses are:
ActionEvent — GUI-button press
KeyEvent — keyboard
MouseEvent — mouse move/drag/click/button

In Android, the superclass is InputEvent.

Event objects contain
— Ul object that triggered the event
— other information depending on event. Examples:
ActionEvent — text string from a button
MouseEvent — mouse coordinates
CSE 331 Spring 2022 19

Achievement unlocked: Observers

This is the observer pattern

— Objects can be observed via observers/listeners that are
notified via callbacks when an event (of interest) occurs

— Pattern: Something used over-and-over in software, worth
recognizing when appropriate and using common terms

— Widely used in public libraries

More examples of “observers” coming later...

CSE 331 Spring 2022

20

GUI Client Programming

« Clients sit around waiting for events like:

mouse move/drag/click, button press, button release

keyboard: key press or release, sometimes with modifiers
like shift/control/alt/etc.

finger tap or drag on a touchscreen

window resize/minimize/restore/close

timer interrupt (including animations)

network activity or file I/O (start, done, error)
« (we will see an example of this shortly)

CSE 331 Spring 2022

21

Event-driven programming

An event-driven program is designed to wait for events:
— program initializes then enters the event loop
— abstractly:
do {
e = getNextEvent() ;
process event e;

} while (e != quit);

Contrast with most programs we have written so far
— they perform specified steps in order and then exit
— that style is still used, just not as frequently
« example: computing Page Rank or other Big Data work

CSE 331 Spring 2022

22

Ul Thread

 Where is the event loop in these Swing programs?

* The library creates a separate thread that runs that event loop
— the “Ul thread”
— created when the JFrame is made visible

— application does not exit until this thread also finishes
 that happens automatically when the window is closed

CSE 331 Spring 2022

23

Problems with SimpleFieldDemo

« Code is too verbose
— can be improved using Lambda syntax

« Code is not at all modular
— one file that mixes data, presentation, interaction

 Too much work involved with laying out elements

CSE 331 Spring 2022

24

Easier Layout Idea #1: Just Say No

* Much of the difficulty here has to do with resizing...
« Do we really need to support resizing?
« Two platforms restrict resizing in some ways:

— Android / iPhone
— Bootstrap (HTML)

CSE 331 Spring 2022

25

iIPhone / Android Layout

iPhone and iPad come in fixed sizes

Just give a fixed layout for each possible size

S activity_campus_paths_main.mi X | € CampusPathsMainActivity,java | >
Palette Q #- 1~ [E E Al ©- OnNexusa- m26- @appheme @language- 5~ Properties O « [~ 1 g
All b TextView @ U x 8 18- [=- I- Ox@®@E % B o button °
Widgets [Button
Text) ToggleButton 10 o o o an —
Layouts CheckBox
Containers ® RadioButton
Images v CheckedTextView = o
Date = Spinner
Transitions C ProgressBar > 9
Advanced = ProgressBar (Horizont: CSE331-17su Campus Paths Q)
Google > SeekBar
Design ~»- SeekBar (Discrete) g
AppCompat [QuickContactBadge
RatingBar
* Switch —
layout_wi... |_content
g layout_hei..|_content
BUTTON Button
style [tonstyle
backgrou...
LT g backgrou...
Component Tree L2 statelistA...
M ConstraintLayout BUTTON y
elevation
ok button - it \—1
visibility | none
g >
: onClick ~|none
TextView
text Button
Ftext
V contentD...
textAp... idget Button
Favorite Attributes
visibility [none
m W
z
g
g S
View all properties =+ =
— 2
Design | Text &

CSE 331 Spring 2022

4 Eventlog [E] Gradle Console

Bootstrap (HTML)

Width is restricted to one of 5 values (phone up to huge screen)
— library automatically switches to best match for screen width
— can use the same design for multiple sizes if you wish

Still allows arbitrary height for the content

CSE 331 Spring 2022 27

Bootstrap Example

BootstrapDemo.html

CSE 331 Spring 2022

28

Easier Layout Idea #2: Declarative Ul

* How much of layout needs to be code?
— does this really require forward / backward reasoning?

* iPhone / Android show that this can be done
— only for fixed sized screens

« HTML can be used as a more declarative language for Ul
— (.NET and other frameworks have comparable toolkits)

CSE 331 Spring 2022 29

HTML

« Hyper-Text Markup Language

» Language for writing documents shown in a web browser
— co-opted to display the Ul for Web apps

« Document is a sequence of tags and text

CSE 331 Spring 2022

30

Anatomy of a Tag

Element

A
- N\

<p> Some Text </p>

/]

Tag Name Content

Closing Tag

CSE 331 Spring 2022

31

Anatomy of a Tag

Element
A

—

<p id=”firstParagraph”>

Tag Name Attrlbute Value
Attribute Name

CSE 331 Spring 2022

—
Some Text </p>

I

Content

Closing Tag

32

Tags form a Tree

<div>
<p id="firstParagraph”> Some Text </p>

<div>
<p>Hello</p>
</div>
</div>

This tree, as it lives in
the browser, is often

called the "DOM" —
Document Object Model

CSE 331 Spring 2022

33

A Few Useful Tags

See the W3Schools HTML reference for a complete list, along
with all their supported attributes.

Some worth knowing:

* <p> - Paragraph tag, surrounds text with whitespace/line
breaks.

e <div>-"“The curly braces of HTML” - used for grouping
other tags. Surrounds its content with whitespace/line
breaks.

 - Like <div>, but no whitespace/line breaks.

«
-Forces anew line (like “\n”). Has no content.

 <html>and <head> and <body> - Used to organize a
basic HTML document.

CSE 331 Spring 2022 34

HTML for Ul

Consists tags and their content

— components become tags
* input fields, buttons, etc.
* e.g., <button>

— containers have start and end tags
 tags placed in between are children
¢ e.g., <div> and <p>

— additional information provided to the tag with “attributes”

HTML removes the need for panel. add calls
— parent / child relationship implied by tree structure

CSE 331 Spring 2022

35

HTML + JS

To make an app we also need code
Code is provided inside a <script> tag

— all browsers support the JavaScript language
— more in a moment...

CSE 331 Spring 2022

36

HTML + JS Ul Example

HtmlFieldDemo.html

CSE 331 Spring 2022

37

HTML + JS + CSS

« (Cascading Style Sheets allow separation of styling from rest
— styling is colors, margins, etc.
— allows non-programmers to take some of this work
» code produces document structure (tree of tags)
« changes to tags require agreement by both parties

CSE 331 Spring 2022

38

Dynamic Web Content

« Earlier example had a fixed set of components.
— same for iPhone / Android apps

* More realistic apps need to change the set of
components displayed on the screen dynamically

— consider Gmail as an example
— need the components to come from code

CSE 331 Spring 2022

39

JS Example

register/index.js

CSE 331 Spring 2022

40

Remaining Problems

——Codeisextremely-verbose
_ canbei | sing L ambd

» Code is not sufficiently modular
— one JS mixes data, display, interaction

T b work involvad with lavi |

« Poor tool support
— HTML is created in strings!
— (and other issues not mentioned so far...)

CSE 331 Spring 2022

41

