CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022
User Interfaces & Event-Driven Programs




Administrivia

« HWY out now
— has a lot of things to do
— start early!
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Graphical User Interfaces (GUIs)

« Large and important class of event-driven programs
— walits for user-interaction events
— mouse clicks, button presses, etc.

« Java, Android, Web, etc. provide libraries to write these
— each of these use callbacks & events

— examples of “event-driven programs”

* Using these libraries decreases bugs
— also gives users a familiar experience
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GUI terminology

window: A first-class citizen of the graphical desktop
— also called a top-level container
— Examples: frame (window), dialog box

component. A GUI widget that resides in a window
— called controls in many other languages
— Examples: button, text box, label

container. A component that hosts (holds) & lays out components
— Examples: frame, panel, box

@ Convert Celsius to Fahrenheit |9 [=] B3

JTextField —» Rdl Celsing -&

JLabel

JButton —»= Convert... Fahrenheit
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More components...
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This lecture

» Brief survey of Desktop, Mobile, and Web
— discuss how each handles key issues
— (no need to memorize anything)

 Next lectures

— go deeper into languages used for Web apps
— improved Ul libraries available for Web apps
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GUI Libraries

» Core parts of these applications:
— stores some data for the user
— displays that data for the user

— allows the user to change the data
« causes the app to re-display

« Early apps required a lot of code to implement these

« More recent improvements have made this easier
— highly valuable

« your time is important
— less code (usually) means fewer bugs
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GUI Libraries

« AWT & Swing are the native Java libraries for writing GUIs
— Android apps are also GUIs and written in Java

» Core parts of these applications:
— stores some data for the user
— displays that data for the user
— allows the user to change the data
e causes the app to re-display

« Library helps with the latter two parts
— components used to display data

— components allow listeners that are notified of interaction
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AWT / Swing Example 1

SimpleFieldDemo.java
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Containers and layout

« Container needs to position (lay out) the child components

* You need to tell it how you want them arranged

* In AWT / Swing, each container has a layout manager

[%% BorderlLayout O] x| E&E GridLayout
Button 1 Button 1 2
Button 3 2 Button 5 Button 3 Long-Named Button 4
Long-Named Button 4 Button 5
Button 1 2 Button 3 Long-Named Button 4 Button 5
Eg% BoxLayout O] x| g’; GridBagl ayout O] x|
Button 1 Button1 | 2 | Button3
2
Button 3 Long-Named Button 4
Long-Named Button 4
Button 5 Button 5
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AWT / Swing Examples

« Default is a flow layout
— components placed next to each other
— wrap around when out of space on the line

« Can change to a 2 x 2 grid layout
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AWT / Swing Example 2

SimpleFieldDemoZ2.java

CSE 331 Spring 2022

12



AWT / Swing Examples

 Does not look natural

* Instead try 2 rows (2 x 1 grid) and flow layout within the rows

Panel (2x2 grid) — Panel (2x1 grid)
— field 1 Panel (flow)
— button 1 | {field 1|
—_field 2 | —| button 1 |
_l button 2 I Panel (flow)
— field 2 |

— button 2 |




AWT / Swing Example 3

SimpleFieldDemo3.java
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Events in GUI Libraries

Most of the GUI widgets can generate events
— button clicks, menu picks, key press, etc.

Add a listener to be called back when those events occur
— component promises to call you in those circumstances
— passed an event object that provides info about the event

More examples of “callbacks” coming later...

CSE 331 Spring 2022
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Achievement unlocked: Callbacks

Callback: “Code” provided by client to be used by library
* In JS etc., pass a function as an argument
« In Java, pass an object with the “code” in a method

Examples: HashMap calls its client's hashCode, equals

Synchronous callbacks:
« Useful when library needs the callback result immediately

Asynchronous callbacks:
* Register to indicate interest and where to call back

« Useful when the callback should be performed later, when
some interesting event occurs
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Event listeners / handlers

Event listeners must implement the proper interface. AWT/Swing:
KeyListener — handle key press

ActionListener — handle button press
MouseListener — handle mouse clicks
MouseMotionListener — handle mouse move/drag

When an event occurs

— the appropriate method specified in the interface is called:
actionPerformed, keyPressed, mouseClicked,
mouseDragged, ...

— an event object is passed to the listener method

Interfaces are different in Android but all conceptually the same
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Android similarities

 Events and listeners work in the same manner

Button btn = ...;
btn.setOnClickListener(new MyClickListener());

public class My(ClickListner
implements ClickListener {
@0verride
public void onClick(View v) {
Log.d(“My Button”, “You pressed it”);
3
1
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Event objects

GUI event is represented by an event object
— passes information often needed by the handler

In AWT/Swing, the superclass is AWTEvent. Some subclasses are:
ActionEvent — GUI-button press
KeyEvent — keyboard
MouseEvent — mouse move/drag/click/button

In Android, the superclass is InputEvent.

Event objects contain
— Ul object that triggered the event
— other information depending on event. Examples:
ActionEvent — text string from a button
MouseEvent — mouse coordinates
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Achievement unlocked: Observers

This is the observer pattern

— Objects can be observed via observers/listeners that are
notified via callbacks when an event (of interest) occurs

— Pattern: Something used over-and-over in software, worth
recognizing when appropriate and using common terms

— Widely used in public libraries

More examples of “observers” coming later...

CSE 331 Spring 2022

20



GUI Client Programming

« Clients sit around waiting for events like:

mouse move/drag/click, button press, button release

keyboard: key press or release, sometimes with modifiers
like shift/control/alt/etc.

finger tap or drag on a touchscreen

window resize/minimize/restore/close

timer interrupt (including animations)

network activity or file I/O (start, done, error)
« (we will see an example of this shortly)

CSE 331 Spring 2022
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Event-driven programming

An event-driven program is designed to wait for events:
— program initializes then enters the event loop
— abstractly:
do {
e = getNextEvent() ;
process event e;

} while (e != quit);

Contrast with most programs we have written so far
— they perform specified steps in order and then exit
— that style is still used, just not as frequently
« example: computing Page Rank or other Big Data work

CSE 331 Spring 2022
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Ul Thread

 Where is the event loop in these Swing programs?

* The library creates a separate thread that runs that event loop
— the “Ul thread”
— created when the JFrame is made visible

— application does not exit until this thread also finishes
 that happens automatically when the window is closed

CSE 331 Spring 2022
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Problems with SimpleFieldDemo

« Code is too verbose
— can be improved using Lambda syntax

« Code is not at all modular
— one file that mixes data, presentation, interaction

 Too much work involved with laying out elements

CSE 331 Spring 2022
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Easier Layout Idea #1: Just Say No

* Much of the difficulty here has to do with resizing...
« Do we really need to support resizing?
« Two platforms restrict resizing in some ways:

— Android / iPhone
— Bootstrap (HTML)

CSE 331 Spring 2022
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iIPhone / Android Layout

iPhone and iPad come in fixed sizes

Just give a fixed layout for each possible size

S activity_campus_paths_main.mi X | € CampusPathsMainActivity,java | >
Palette Q #- 1~ [E E Al ©- OnNexusa- m26- @appheme @language- 5~ Properties O « [~ 1 g
All b TextView @ U x 8 18- [=- I- Ox@®@E % B o button °
Widgets [ Button
Text ) ToggleButton 10 o o o an —
Layouts CheckBox
Containers ® RadioButton
Images v CheckedTextView = o
Date = Spinner
Transitions C ProgressBar > 9
Advanced = ProgressBar (Horizont: CSE331-17su Campus Paths Q)
Google > SeekBar
Design ~»- SeekBar (Discrete) g
AppCompat [ QuickContactBadge
RatingBar
* Switch —
layout_wi... |_content
g layout_hei..|_content
BUTTON Button
style [tonstyle
backgrou...
LT g backgrou...
Component Tree L2 statelistA...
M ConstraintLayout BUTTON y
elevation
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visibility | none
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TextView
text Button
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visibility [ none
m W
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g
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View all properties =+ =
— 2
Design | Text &
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Bootstrap (HTML)

Width is restricted to one of 5 values (phone up to huge screen)
— library automatically switches to best match for screen width
— can use the same design for multiple sizes if you wish

Still allows arbitrary height for the content
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Bootstrap Example

BootstrapDemo.html

CSE 331 Spring 2022
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Easier Layout Idea #2: Declarative Ul

* How much of layout needs to be code?
— does this really require forward / backward reasoning?

* iPhone / Android show that this can be done
— only for fixed sized screens

« HTML can be used as a more declarative language for Ul
— (.NET and other frameworks have comparable toolkits)

CSE 331 Spring 2022 29



HTML

« Hyper-Text Markup Language

» Language for writing documents shown in a web browser
— co-opted to display the Ul for Web apps

« Document is a sequence of tags and text

CSE 331 Spring 2022
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Anatomy of a Tag

Element

A
- N\

<p> Some Text </p>

/]

Tag Name Content

Closing Tag
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Anatomy of a Tag

Element
A

—

<p id=”firstParagraph”>

Tag Name Attrlbute Value
Attribute Name
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Some Text </p>

I

Content

Closing Tag
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Tags form a Tree

<div>
<p id="firstParagraph”> Some Text </p>
<br>
<div>
<p>Hello</p>
</div>
</div>

This tree, as it lives in
the browser, is often

called the "DOM" —
Document Object Model

CSE 331 Spring 2022
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A Few Useful Tags

See the W3Schools HTML reference for a complete list, along
with all their supported attributes.

Some worth knowing:

* <p> - Paragraph tag, surrounds text with whitespace/line
breaks.

e <div>-"“The curly braces of HTML” - used for grouping
other tags. Surrounds its content with whitespace/line
breaks.

 <span> - Like <div>, but no whitespace/line breaks.

« <br />-Forces anew line (like “\n”). Has no content.

 <html>and <head> and <body> - Used to organize a
basic HTML document.
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HTML for Ul

Consists tags and their content

— components become tags
* input fields, buttons, etc.
* e.g., <button>

— containers have start and end tags
 tags placed in between are children
¢ e.g., <div> and <p>

— additional information provided to the tag with “attributes”

HTML removes the need for panel. add calls
— parent / child relationship implied by tree structure

CSE 331 Spring 2022
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HTML + JS

To make an app we also need code
Code is provided inside a <script> tag

— all browsers support the JavaScript language
— more in a moment...

CSE 331 Spring 2022
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HTML + JS Ul Example

HtmlFieldDemo.html

CSE 331 Spring 2022
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HTML + JS + CSS

« (Cascading Style Sheets allow separation of styling from rest
— styling is colors, margins, etc.
— allows non-programmers to take some of this work
» code produces document structure (tree of tags)
« changes to tags require agreement by both parties

CSE 331 Spring 2022
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Dynamic Web Content

« Earlier example had a fixed set of components.
— same for iPhone / Android apps

* More realistic apps need to change the set of
components displayed on the screen dynamically

— consider Gmail as an example
— need the components to come from code

CSE 331 Spring 2022
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JS Example

register/index.js
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Remaining Problems

——Codeisextremely-verbose
_ canbei | sing L ambd

» Code is not sufficiently modular
— one JS mixes data, display, interaction

T b work involvad with lavi |

« Poor tool support
— HTML is created in strings!
— (and other issues not mentioned so far...)
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