CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022
Exceptions and Assertions




Outline

General concepts about dealing with errors and failures

« Assertions: what, why, how
— for things you believe will/should never happen

* Exceptions: what, how
— how to throw, catch, and declare exceptions in Java
— subtyping of exceptions
— checked vs. unchecked exceptions

« EXxceptions: why in general
— for things you believe are bad and should rarely happen
— and many other style issues

« Alternative with trade-offs: Returning special values

« Summary and review
CSE 331 Spring 2022



Not all “errors” should be failures

Some “error’ cases:

1. Misuse of your code
— e.g., precondition violation
— should be a failure (i.e., made visible to the user)

2. Errors in your code vs reasoning
— e.g., representation invariant fails to hold
— should be a failure

3. Unexpected resource problems
— e.g., missing file, server offline, ...
— not an error in the sense above (... these are not bugs)
— should not be a failure (i.e., do try to recover)

CSE 331 Spring 2022



What to do when failing

Fail fast and fail friendly

Goal 1. Prevent harm
— stop before anything worse happens
— (do still need to perform cleanup: close open resources etc.)

Goal 2: Give information about the problem

— failing quickly helps localize the defect
— a good error message is important for debugging

CSE 331 Spring 2022



Outline

General concepts about dealing with errors and failures

Assertions: what, why, how
— for things you believe will/should never happen

Exceptions: what, how

— how to throw, catch, and declare exceptions in Java
— subtyping of exceptions

— checked vs. unchecked exceptions

Exceptions: why in general
— for things you believe are bad and should rarely happen
— and many other style issues

Alternative with trade-offs: Returning special values

Summary and review
CSE 331 Spring 2022



Square root

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt (double x) ({

CSE 331 Spring 2022

13



Square root with assertion

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt (double x) ({
assert x >= 0.0;
double result;
. compute result ..
assert Math.abs (result*result - x) < .0001;
return result;

* These two assertions serve different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in
this lecture as examples.)

CSE 331 Spring 2022 14



Outline

» General concepts about dealing with errors and failures

Assertions: what, why, how
— for things you believe will/should never happen

« EXxceptions: what, how
— how to throw, catch, and declare exceptions in Java
— subtyping of exceptions
— checked vs. unchecked exceptions

« Exceptions: why in general
— for things you believe are bad and should rarely happen
— and many other style issues

« Alternative with trade-offs: Returning special values

« Summary and review
CSE 331 Spring 2022 15



Square root, specified for all inputs

// throws: NegativeArgumentException if x < 0
// returns: approximation to square root of x
public double sqgrt (double x)
throws NegativeArgumentException ({
if (x < 0)
throw new NegativeArgumentException() ;

}

« throws is part of a method signature: “it might happen”

— comma-separated list
— like @maodifies, promises are in what is not listed
« throw is a statement that actually causes exception-throw

— immediate control transfer [like return but different]

CSE 331 Spring 2022 16



Using try-catch to handle exceptions

public double sqgrt (double x)
throws NegativeArgumentException

Client code:

try {
y = sqrt(..);
. other statements
} catch (NegativeArgumentException e) {
e.printStackTrace(); // or other actions

}

Handled by nearest dynamically enclosing try/catch
— top-level default handler: print stack trace & crash

CSE 331 Spring 2022 17



Catching with inheritance

try {
code...
} catch (FileNotFoundException fnfe) ({
code to handle a file not found exception
} catch (IOException ioe) {
code to handle any other I/O exception
} catch (Exception e) {
code to handle any other exception

}

A SocketException would match the second block
* AnArithmeticException would match the third block
» (Subsequent catch blocks need not be supertypes like this)

CSE 331 Spring 2022

18



Throwing and catching

Executing program has a stack of

currently executing methods Method where
: : error occurred |
— dynamic: reflects runtime order of
method calls vonog.cal

Method without an
exception handler |<—

— no relation to static nesting of
classes, packages, etc.

Wi ) < th trol Method call
en an exception is thrown, contro Method with an

transfers to nearest method with a exception handler |<—

matching catch block Method call

— if none found, top-level handler used
Exceptions allow non-local error handling

— a method many levels up the stack
can handle a deep error

main

CSE 331 Spring 2022 19



Code Paths with Exceptions

Three potential paths through the code below:

try {
y = foo(..);

.. more code ..

} catch (Type name) {
.. code to handle the exception ..

}

1. sqrt returns normally
2. sqrt throws an exception caught by this catch
3. sqrt throws an exception not caught here

CSE 331 Spring 2022

20



The £inally block

finally block is always executed
— whether an exception is thrown or not

try {
y = foo(..);
. more code ..

} catch (Type name) ({
.. code to handle the exception ..

} finally ({

. code to run after the try or catch finishes

}

CSE 331 Spring 2022 21



What £inally is for

finally is used for common “must-always-run” or “clean-up” code

— avoids duplicated code in catch branch[es] and after
— avoids having to catch all exceptions

try {
// ... write to out; might throw exception
} catch (IOException e) {

System.out.println("Caught IOException: "

+ e.getMessage())
} finally {
out.close() ;

}

CSE 331 Spring 2022 22



(Abridged) Exception Hierarchy

Exception

|

I I

ClassNotFoundException DataFormatException IOException

NoSuchMethodException RuntimeException SQLException

lf\

FileNotFoundException

MalformedURLEXxception SocketException

A%

|

ArithmeticException

ClassCastException

ConcurrentModificationException

EmptyStackException

[

[

l

[

lllegalArgumeniException

lllegalStaleException

IndexOutOfBoundsException

NoSuchElementException

l

NullPointerException

SecurityException

UnsupportedOperationException

CSE 331 Spring 2022

23




Java’'s checked/unchecked distinction

Checked exceptions (style: for special cases / abnormal cases)
— callee must declare in signature (else type error)
— client must either catch or declare (else type error)

« even if you can prove it will never happen at run time, the
type system does not “believe you”

— guaranteed to be a matching enclosing catch at runtime

Unchecked exceptions (style: for never-expected) ‘Throwable

— library has no need to declare T T

— client has no need to catch

— these are subclasses of: Exception Error
« RuntimeException ?f *
« Error (rarely caught) Checked Runtime

exceptions [Exception

CSE 331 Spring 2022 ? ? ? 24




Outline

» General concepts about dealing with errors and failures

Assertions: what, why, how
— for things you believe will/should never happen

* Exceptions: what, how
— how to throw, catch, and declare exceptions in Java
— subtyping of exceptions
— checked vs. unchecked exceptions

« EXxceptions: why in general
— for things you believe are bad and should rarely happen
— and many other style issues

« Alternative with trade-offs: Returning special values

« Summary and review
CSE 331 Spring 2022 25



Two distinct uses of exceptions

» Errors that should be failures
— unexpected (ideally, should not happen at all)
— should be rare with high quality client and library
— can be the client’s fault or the library’s
— often unrecoverable

« Special cases (a.k.a. exceptional cases)

— expected, just not the common case
— possibly unpredictable or unpreventable by client

CSE 331 Spring 2022

26



Handling exceptions

» Errors that should be failures
— usually can’t recover
— unchecked exceptions the better choice (avoids much work)
— if condition not checked, exception propagates up the stack
 top-level handler prints the stack trace

» Special cases
— take special action and continue computing
— should always check for this condition
— should handle locally by code that knows how to continue
— checked exceptions the better choice

CSE 331 Spring 2022 27



Checked vs. unchecked

« No perfect answer to the question “should clients be forced to catch
(or declare they throw) this exception?”

— Java provided both options

« Advantages to checked exceptions:
— Static checking of callee: only declared exceptions are thrown
— Static checking of caller: exception is caught or declared

« Disadvantages:

— impedes implementations and overrides (can’t add exceptions)
« prevents truly giving no promises when @requires is false

— often in your way when prototyping
— have to catch or declare even if the exception is not possible

CSE 331 Spring 2022 28



Propagating an exception

// returns: x such that ax*2 + bx + ¢ =0
// throws: NegativeArgumentException if no real soln exists
double solveQuad(double a, double b, double c)
throws NegativeArgumentException ({
// No need to catch exception thrown by sqgrt
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

Aside: does “negative argument” make sense to the caller?

CSE 331 Spring 2022 29



Why catch exceptions locally?

Problems:

1. Failure to catch exceptions often violates modularity
— call chain: A -> IntSet.insert —> IntList.insert

— IntList.insert throws some exception
» implementer of IntSet.insert knows how list is being used
« implementer of A may not even know that IntList exists

2. Possible that a method on the stack may think that it is handling an
exception raised by a different call

Alternative: catch it and throw again
— “chaining” or “translation”
— do this even if the exception is better handled up a level

— makes it clear to reader of code that it was not an omission

CSE 331 Spring 2022 30



Exception translation

// returns: x such that ax*2 + bx + ¢ = 0
// throws: NotRealException if no real solution exists

double solveQuad(double a, double b, double c)
throws NotRealException {

try {
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

} catch (NegativeArgumentException e) {
throw new NotRealException(); // “chaining”

}

class NotRealException extends Exception {
NotRealException () { super(); }
NotRealException (String message) { super (message); }
NotRealException (Throwable cause) { super (cause); }
NotRealException (String msg, Throwable c) { super(msg, c); }

CSE 331 Spring 2022 31



Don’t ignore exceptions

Effective Java Tip: Don't ignore exceptions

Empty catch block is poor style sometimes okay inside of
an exception handler

try {
readFile (filename) ;

} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened
— and exit if that's appropriate for the application

} catch (IOException e) {
e.printStackTrace() ;

System.exit (1) ;

CSE 331 Spring 2022 32



Outline

» General concepts about dealing with errors and failures

Assertions: what, why, how
— for things you believe will/should never happen

* Exceptions: what, how in Java
— how to throw, catch, and declare exceptions
— subtyping of exceptions
— checked vs. unchecked exceptions

« Exceptions: why in general
— for things you believe are bad and should rarely happen
— and many other style issues

« Alternative with trade-offs: Returning special values

« Summary and review
CSE 331 Spring 2022 33



Informing the client of a problem

Special value:
— null for Map.get

— -1 for indexOf
— NaN for sqrt of negative number

Advantages:
— can be less verbose than try/catch machinery

Disadvantages:
— error-prone: callers forget to check, forget spec, etc.

— need “extra” result: doesn’t work if every result could be real
« example: if a map could store null keys

— has to be propagated manually one call at a time

General Java style advice: exceptions for exceptional conditions

CSE 331 Spring 2022 34



Outline

General concepts about dealing with errors and failures

Assertions: what, why, how
— For things you believe will/should never happen

Exceptions: what, how in Java

— How to throw, catch, and declare exceptions
— Subtyping of exceptions

— Checked vs. unchecked exceptions

Exceptions: why in general
— For things you believe are bad and should rarely happen
— And many other style issues

Alternative with trade-offs: Returning special values

Summary and review
CSE 331 Spring 2022 35



Exceptions: review

Use an assertion for internal consistency checks that should not fail
— when checking at runtime is possible

Use only a precondition when
— used in a context in which calls can be checked via reasoning
— but checking at runtime would be prohibitive
* e.g., requiring that a list be sorted

Use an exception when
— used in a dynamic / unpredictable context (client can’t predict)
— for exceptional cases only

Use a special value when
— it is a common case (not really exceptional)
— clients are likely (?) to remember to check for it

CSE 331 Spring 2022 36



Exceptions: review, continued

Use checked exceptions most of the time
— static checking is helpful! (tools, inspection, & testing)

Avoid checked exceptions if there is probably no way to recover
Handle exceptions sooner rather than later

Good reference: Effective Java chapter
— a whole chapter: exception-handling design matters!

CSE 331 Spring 2022 37



