
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

Exceptions and Assertions

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 2

Not all “errors” should be failures

Some “error” cases:

1. Misuse of your code
– e.g., precondition violation
– should be a failure (i.e., made visible to the user)

2. Errors in your code vs reasoning
– e.g., representation invariant fails to hold
– should be a failure

3. Unexpected resource problems
– e.g., missing file, server offline, …
– not an error in the sense above (... these are not bugs)
– should not be a failure (i.e., do try to recover)

3CSE 331 Spring 2022

What to do when failing

Fail fast and fail friendly

Goal 1: Prevent harm
– stop before anything worse happens
– (do still need to perform cleanup: close open resources etc.)

Goal 2: Give information about the problem
– failing quickly helps localize the defect
– a good error message is important for debugging

4CSE 331 Spring 2022

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 6

Square root

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
...

}

13CSE 331 Spring 2022

Square root with assertion

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
assert x >= 0.0;
double result;
… compute result …
assert Math.abs(result*result – x) < .0001;
return result;

}

• These two assertions serve different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in
this lecture as examples.)

14CSE 331 Spring 2022

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 15

Square root, specified for all inputs

// throws: NegativeArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)

throws NegativeArgumentException {
if (x < 0)
throw new NegativeArgumentException();

…
}

• throws is part of a method signature: “it might happen”
– comma-separated list
– like @modifies, promises are in what is not listed

• throw is a statement that actually causes exception-throw
– immediate control transfer [like return but different]

16CSE 331 Spring 2022

Using try-catch to handle exceptions

public double sqrt(double x)
throws NegativeArgumentException

…

Client code:

try {
y = sqrt(…);
... other statements ...

} catch (NegativeArgumentException e) {
e.printStackTrace(); // or other actions

}

• Handled by nearest dynamically enclosing try/catch
– top-level default handler: print stack trace & crash

17CSE 331 Spring 2022

Catching with inheritance

try {
code…

} catch (FileNotFoundException fnfe) {
code to handle a file not found exception

} catch (IOException ioe) {
code to handle any other I/O exception

} catch (Exception e) {
code to handle any other exception

}

• A SocketException would match the second block
• An ArithmeticException would match the third block
• (Subsequent catch blocks need not be supertypes like this)

18CSE 331 Spring 2022

Throwing and catching

• Executing program has a stack of
currently executing methods
– dynamic: reflects runtime order of

method calls
– no relation to static nesting of

classes, packages, etc.
• When an exception is thrown, control

transfers to nearest method with a
matching catch block
– if none found, top-level handler used

• Exceptions allow non-local error handling
– a method many levels up the stack

can handle a deep error

19CSE 331 Spring 2022

Code Paths with Exceptions

Three potential paths through the code below:

try {
y = foo(…);
… more code …

} catch (Type name) {
… code to handle the exception …

}

1. sqrt returns normally
2. sqrt throws an exception caught by this catch
3. sqrt throws an exception not caught here

20CSE 331 Spring 2022

The finally block

finally block is always executed
– whether an exception is thrown or not

try {
y = foo(…);
… more code …

} catch (Type name) {
… code to handle the exception …

} finally {
… code to run after the try or catch finishes

}

21CSE 331 Spring 2022

What finally is for

finally is used for common “must-always-run” or “clean-up” code
– avoids duplicated code in catch branch[es] and after
– avoids having to catch all exceptions

try {
// ... write to out; might throw exception

} catch (IOException e) {
System.out.println("Caught IOException: "

+ e.getMessage());
} finally {
out.close();

}

22CSE 331 Spring 2022

(Abridged) Exception Hierarchy

23CSE 331 Spring 2022

Java’s checked/unchecked distinction

Checked exceptions (style: for special cases / abnormal cases)
– callee must declare in signature (else type error)
– client must either catch or declare (else type error)

• even if you can prove it will never happen at run time, the
type system does not “believe you”

– guaranteed to be a matching enclosing catch at runtime

Unchecked exceptions (style: for never-expected)
– library has no need to declare
– client has no need to catch
– these are subclasses of:

• RuntimeException
• Error (rarely caught)

Throwable

Runtime
Exception

ErrorException

Checked
exceptions

24CSE 331 Spring 2022

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 25

Two distinct uses of exceptions

• Errors that should be failures
– unexpected (ideally, should not happen at all)
– should be rare with high quality client and library
– can be the client’s fault or the library’s
– often unrecoverable

• Special cases (a.k.a. exceptional cases)
– expected, just not the common case
– possibly unpredictable or unpreventable by client

26CSE 331 Spring 2022

Handling exceptions

• Errors that should be failures
– usually can’t recover
– unchecked exceptions the better choice (avoids much work)
– if condition not checked, exception propagates up the stack

• top-level handler prints the stack trace

• Special cases
– take special action and continue computing
– should always check for this condition
– should handle locally by code that knows how to continue
– checked exceptions the better choice

27CSE 331 Spring 2022

Checked vs. unchecked

• No perfect answer to the question “should clients be forced to catch
(or declare they throw) this exception?”
– Java provided both options

• Advantages to checked exceptions:
– Static checking of callee: only declared exceptions are thrown
– Static checking of caller: exception is caught or declared

• Disadvantages:
– impedes implementations and overrides (can’t add exceptions)

• prevents truly giving no promises when @requires is false

– often in your way when prototyping
– have to catch or declare even if the exception is not possible

CSE 331 Spring 2022 28

Propagating an exception

// returns: x such that ax^2 + bx + c = 0
// throws: NegativeArgumentException if no real soln exists
double solveQuad(double a, double b, double c)

throws NegativeArgumentException {
// No need to catch exception thrown by sqrt
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

Aside: does “negative argument” make sense to the caller?

29CSE 331 Spring 2022

Why catch exceptions locally?

Problems:

1. Failure to catch exceptions often violates modularity
– call chain: A -> IntSet.insert -> IntList.insert
– IntList.insert throws some exception

• implementer of IntSet.insert knows how list is being used
• implementer of A may not even know that IntList exists

2. Possible that a method on the stack may think that it is handling an
exception raised by a different call

Alternative: catch it and throw again
– “chaining” or “translation”
– do this even if the exception is better handled up a level
– makes it clear to reader of code that it was not an omission

30CSE 331 Spring 2022

Exception translation
// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)

throws NotRealException {
try {
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

} catch (NegativeArgumentException e) {
throw new NotRealException(); // “chaining”

}
}

class NotRealException extends Exception {
NotRealException() { super(); }
NotRealException(String message) { super(message); }
NotRealException(Throwable cause) { super(cause); }
NotRealException(String msg, Throwable c) { super(msg, c); }

}

31CSE 331 Spring 2022

Don’t ignore exceptions

Effective Java Tip: Don't ignore exceptions

Empty catch block is poor style

try {
readFile(filename);

} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened
– and exit if that’s appropriate for the application

} catch (IOException e) {
e.printStackTrace();
System.exit(1);

}

32CSE 331 Spring 2022

sometimes okay inside of
an exception handler

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how in Java
– how to throw, catch, and declare exceptions
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 33

Informing the client of a problem
Special value:

– null for Map.get
– -1 for indexOf
– NaN for sqrt of negative number

Advantages:
– can be less verbose than try/catch machinery

Disadvantages:
– error-prone: callers forget to check, forget spec, etc.
– need “extra” result: doesn’t work if every result could be real

• example: if a map could store null keys
– has to be propagated manually one call at a time

General Java style advice: exceptions for exceptional conditions

34CSE 331 Spring 2022

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how in Java
– How to throw, catch, and declare exceptions
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 35

Exceptions: review

Use an assertion for internal consistency checks that should not fail
– when checking at runtime is possible

Use only a precondition when
– used in a context in which calls can be checked via reasoning
– but checking at runtime would be prohibitive

• e.g., requiring that a list be sorted

Use an exception when
– used in a dynamic / unpredictable context (client can’t predict)
– for exceptional cases only

Use a special value when
– it is a common case (not really exceptional)
– clients are likely (?) to remember to check for it

36CSE 331 Spring 2022

Exceptions: review, continued

Use checked exceptions most of the time
– static checking is helpful! (tools, inspection, & testing)

Avoid checked exceptions if there is probably no way to recover

Handle exceptions sooner rather than later

Good reference: Effective Java chapter
– a whole chapter: exception-handling design matters!

37CSE 331 Spring 2022

