
CSE 331

Software Design & Implementation

Kevin Zatloukal
Spring 2022

Exceptions and Assertions

Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how

– how to throw, catch, and declare exceptions in Java

– subtyping of exceptions

– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen

– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 2

Not all “errors” should be failures

Some “error” cases:

1. Misuse of your code

– e.g., precondition violation

– should be a failure (i.e., made visible to the user)

2. Errors in your code vs reasoning

– e.g., representation invariant fails to hold

– should be a failure

3. Unexpected resource problems

– e.g., missing file, server offline, …

– not an error in the sense above (... these are not bugs)

– should not be a failure (i.e., do try to recover)

3CSE 331 Spring 2022

What to do when failing

Fail fast and fail friendly

Goal 1: Prevent harm
– stop before anything worse happens

– (do still need to perform cleanup: close open resources etc.)

Goal 2: Give information about the problem
– failing quickly helps localize the defect

– a good error message is important for debugging

4CSE 331 Spring 2022

Errors that should be failures

A precondition prohibits misuse of your code

– weakens the spec by throwing out unhandled cases

This ducks the problem of errors-will-happen

– with enough clients, someone will use your code incorrectly

Practice defensive programming:

– usually makes sense to check for these errors

– even though you don’t specify what the behavior will be,

it still makes sense to fail fast

5CSE 331 Spring 2022

Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how

– for things you believe will/should never happen

• Exceptions: what, how

– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions

– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen

– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2022 6

Defensive programming

Assertions about your code:

– precondition, postcondition, representation invariant, etc.

Check these statically via reasoning and tools

Check these dynamically via assertions

assert index >= 0;
assert items != null : "null item list argument"
assert size % 2 == 0 : "Bad size for " +

toString();
– throws AssertionError if condition is false

– includes descriptive messages

7CSE 331 Spring 2022

Enabling assertions

In Java, assertions can be enabled or disabled at runtime

(no recompile is required)

Command line:

java –ea runs code with assertions enabled

java runs code with assertions disabled (default)

Eclipse:

Select Run > Run Configurations… then add -ea to VM

arguments under (x)=arguments tab

Turn them off only in rare circumstances

(e.g., production code running on a client machine)

8CSE 331 Spring 2022

How not to use assertions

Don’t clutter the code with useless assertions

x = y + 1;
assert x == y + 1; // the compiler worked!

• Too many assertions can make the code hard to read

• Be judicious about where you include them. Good choices:

– preconditions & postconditions

– invariants of non-trivial loops

– representation invariants after mutations

9CSE 331 Spring 2022

How not to use assertions

Don’t perform side effects:

assert list.remove(x); // won’t happen if disabled

// better:

boolean found = list.remove(x);
assert found;

10CSE 331 Spring 2022

assert and checkRep()

CSE 331’s checkRep() is another dynamic check

Strategy: use assert in checkRep() to test and fail with

meaningful message if trouble found

– CSE 331 tests will check that assertions are enabled

Easy to forget to enable them in your own projects

– Google didn’t use them for this reason

11CSE 331 Spring 2022

Expensive checkRep()tests

Detailed checks can be too slow in production

– especially if asymptotically slower than code being checked

But complex tests can be very helpful during testing & debugging

(let the computer find problems for you!)

Suggested strategy for checkRep:

– create a static, global “debug” or “debugLevel” variable

– run expensive tests when this is enabled

– turn it on during unit tests

• can use JUnit’s @Before for this

12CSE 331 Spring 2022

Square root

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
...

}

13CSE 331 Spring 2022

Square root with assertion

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
assert x >= 0.0;
double result;
… compute result …
assert Math.abs(result*result – x) < .0001;
return result;

}

• These two assertions serve different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in
this lecture as examples.)

14CSE 331 Spring 2022

