
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

Identity, equals, and hashCode

Overview

• Using the libraries reduces bugs in most cases
– take advantage of code already inspected & tested

• In Java, collection classes depend on equals and hashCode
– EJ 47: “Know and use the libraries”

• “every programmer should be familiar with the contents
of java.lang and java.util”

– e.g., List may not work properly if equals is wrong
– e.g., HashSet may not work properly of hashCode is wrong

• You will need to use these for HW5+

• Same concepts exist in other languages
2CSE 331 Spring 2022

What might we want?

• Sometimes want equivalence relation bigger than ==
– Java takes OOP approach of letting classes override equals
– (can also be defined by a Comparator)

CSE 331 Spring 2022 3

Date d1 = new Date(12,27,2013);
Date d2 = new Date(12,27,2013);
Date d3 = d2;
// d1==d2 ?
// d2==d3 ?
// d1.equals(d2) ?
// d2.equals(d3) ?

month

day

year

12

27
2013

d1
d2
d3

month

day

year

12

27
2013

Expected properties of equality

Reflexive a.equals(a) == true

– Confusing if an object does not equal itself

Symmetric a.equals(b) iff b.equals(a)

– Confusing if order-of-arguments matters

Transitive a.equals(b) && b.equals(c) => a.equals(c)

– Confusing again to violate centuries of logical reasoning

A relation that is reflexive, transitive, and symmetric is
an equivalence relation

4CSE 331 Spring 2022

Reference equality

• Reference equality means an object is equal only to itself
– a == b only if a and b refer to (point to) the same object

• Reference equality is an equivalence relation
– Reflexive
– Symmetric
– Transitive

• Reference equality is the smallest equivalence relation on objects
– “Hardest” to show two objects are equal (must be same object)
– Cannot be smaller without violating reflexivity
– Sometimes but not always what we want

CSE 331 Spring 2022 5

Object.equals method

public class Object {
public boolean equals(Object o) {
return this == o;

}
…

}

• Implements reference equality
• Subclasses can override to implement a different equality
• But library includes a contract equals should satisfy

– Reference equality satisfies it
– So should any overriding implementation
– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding

6CSE 331 Spring 2022

equals specification
public boolean equals(Object obj) should be:

• reflexive: for any reference value x, x.equals(x) == true

• symmetric: for any reference values x and y,
x.equals(y) == y.equals(x)

• transitive: for any reference values x, y, and z, if x.equals(y)
and y.equals(z) are true, then x.equals(z) is true

• consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false (provided neither is mutated)

• For any non-null reference value x, x.equals(null) should
return false

7CSE 331 Spring 2022

Why all this?

• Remember the goal is a contract:
– weak enough to allow different useful overrides
– strong enough so clients can assume equal-ish things

• example: to implement a set
– this gives a good balance in practice

• In summary:
– equivalence relation on non-null objects
– consistency, but allow for mutation to change the answer
– asymmetric with null (other way raises exception)

• weird but useful
• often see, e.g., “left”.equals(direction) – false for null

CSE 331 Spring 2022 8

An example

A class where we may want equals to mean equal contents

public class Duration {
private final int min; // RI: min>=0

private final int sec; // RI: 0<=sec<60

public Duration(int min, int sec) {
assert min>=0 && sec>=0 && sec<60;

this.min = min;

this.sec = sec;

}

}

– Should be able to implement what we want and satisfy the
equals contract…

CSE 331 Spring 2022 9

How about this?

public class Duration {

…

public boolean equals(Duration d) {
return this.min==d.min && this.sec==d.sec;

}

}

Two bugs:
1. Violates contract for null (not that interesting)

– Can add if(d==null) return false;
• But our fix for the other bug will make this unnecessary

2. Does not override Object’s equals method (more interesting)

CSE 331 Spring 2022 10

Overloading versus overriding

In Java:
– A class can have multiple methods with the same name and

different parameters (number or type)
– A method overrides a superclass method only if it has the

same name and exact same argument types

CSE 331 Spring 2022 11

Overloading versus overriding

• Methods in Java are identified by the signature
– name + argument types

• Classes can have only one method with a given signature
– subclass method overrides superclass method with its own

• Classes can have many methods with the same name
– e.g., List.add(Object) and List.add(int, Object)
– this is called overloading

CSE 331 Spring 2022 12

Overloading versus overriding

In Java:
– A class can have multiple methods with the same name and

different parameters (number or type)
– A method overrides a superclass method only if it has the

same name and exact same argument types

So, Duration’s boolean equals(Duration d) does not
override Object’s boolean equals(Object d)

– Sometimes useful to avoid having to make up different
method names

– Sometimes confusing since the rules for what-method-gets-
called are complicated

CSE 331 Spring 2022 13

Java Method Calls

• Signature of the method to call is chosen at compile time
– suppose class has equals(Object) and equals(Duration)
– Java chooses “best” match to the argument’s compile-time type
– if argument has type Duration, equals(Duration) is best match
– if argument has any other type, equals(Object) is only match

• Finding the method with that signature to call happens at run time
– Java looks in the actual class of x (at run time)
– if it has a method with that signature, that method is called
– otherwise, it continues looking in the superclass (recursively)

CSE 331 Spring 2022 14

Example: no overriding

public class Duration {
public boolean equals(Duration d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

CSE 331 Spring 2022 15

// true
// false(!)

// true [using Object’s equals]

// false(!)
// false(!)

Example fixed (mostly)

public class Duration {
public boolean equals(Object d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

CSE 331 Spring 2022 16

// true
// true [overriding]
// true [overriding]
// true [overriding]
// true [overriding]

But wait!

This doesn’t compile:

public class Duration {

…

public boolean equals(Object o) {
return this.min==o.min && this.sec==o.sec;

}

}

CSE 331 Spring 2022 17

Really fixed now
public class Duration {

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Cast cannot fail
• We want equals to work on any pair of objects
• Gets null case right too (null instanceof C always false)
• So: rare use of cast that is correct and idiomatic

– This is what you should do (cf. Effective Java)
CSE 331 Spring 2022 18

Satisfies the contract
public class Duration {

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Reflexive: Yes
• Symmetric: Yes, even if o is not a Duration!

– (Assuming o’s equals method satisfies the contract)
• Transitive: Yes, similar reasoning to symmetric

CSE 331 Spring 2022 19

Even better

• Defensive Tip: use the @Override annotation when overriding

public class Duration {
@Override
public boolean equals(Object o) {

…
}

}

• Compiler warning if not actually an override
– Catches bug where argument is Duration or String or ...
– Alerts reader to overriding

• Concise, relevant, checked documentation

CSE 331 Spring 2022 20

