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Administrivia

• HW3 due this evening

• HW4 out tonight
– write tests for some of the parts
– write tests for all the parts in HW5
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Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– think carefully through the subdomains you are using
– can then take just one example from each subdomain

• Some heuristics are useful for choosing 
subdomains...
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Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box:  specification visible, internals hidden

Example
// returns:  a > b => returns a
//           a < b => returns b
//           a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3)  => 4   (i.e. any input in the subdomain a > b)
(3, 4)  => 4   (i.e. any input in the subdomain a < b)
(3, 3)  => 3   (i.e. any input in the subdomain a = b)
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Specification Testing Example

Write tests based on cases in the specification
// returns: the smallest i such
//          that a[i] == value
// throws:  Missing if value is not in a
int find(int[] a, int value) throws Missing

Two obvious tests:
(  [4, 5, 6], 5  ) => 1
(  [4, 5, 6], 7  ) => throw Missing

Have we captured all the cases?

Must hunt for multiple cases
– Including scrutiny of effects and modifies

5

(  [4, 5, 5], 5  ) => 1
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Heuristic: Clear (glass, white)-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– alternate algorithms for different cases
– behavior of the implementation not promised in the spec

• e.g., spec doesn’t promise smallest index,
but implementation does produce that
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Combining Clear- and Black-Box

For buggy abs, what are revealing subdomains?

// returns:  x < 0     => returns –x
//           otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else       return x;

}

Example sets of subdomains:
– Which is best?

Why not:

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}
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Heuristic: Boundary Cases

Create tests at the edges of subdomains

Why? 
– off-by-one bugs
– smallest & largest numbers
– empty collection

Small subdomains at the edges of the “main” subdomains have a high 
probability of revealing many common errors

– also, you might have misdrawn the boundaries
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Boundary Testing
Point is on a boundary if either:

– there exists an adjacent point in a different subdomain
– there is no point to one side

Example: function has different behavior on 1, …, n versus n+1…

Example: f(x) which requires x >= 0
– x = 0 is a boundary because x < 0 is not allowed
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Boundary Cases: Integers
// returns: |x|
public int abs(int x) {…}

What are some values or ranges of x that might be worth probing?
– x < 0 (flips sign) or x ≥ 0 (returns unchanged)
– Around x = 0 (boundary condition)
– Specific tests: say x = -1, 0, 1
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Boundary Testing
To define the boundary, need a notion of adjacent inputs 

Example approach: 
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– no adjacent point in some direction

Example: f(x) which requires x >= 0
– x = 0 is a boundary because x < 0 is not allowed
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Boundary Testing
To define the boundary, need a notion of adjacent inputs 

Example approach: 
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– no adjacent point in some direction

Example: list of integers
– basic operations: push, pop, replace
– adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>, <[2,3],[4,3]>
– boundary point: [ ] (can’t apply pop)
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Heuristic: Special Cases

Arithmetic
– zero
– overflow errors in arithmetic

Objects
– null
– same object passed as multiple arguments (aliasing)

All of these are common cases where bugs lurk
• you’ll find more as you encounter more bugs
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Special Cases: Arithmetic Overflow
// returns: |x|
public int abs(int x) {…}

How about…
int x = Integer.MIN_VALUE; // x=-2147483648
System.out.println(x<0);   // true
System.out.println(Math.abs(x)<0); // also true!

From Javadoc for  Math.abs:
Note that if the argument is equal to the value of 
Integer.MIN_VALUE, the most negative representable int
value, the result is that same value, which is negative
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Special Cases: Duplicates & Aliases

// modifies: src, dest
// effects:  removes all elements of src and
//           appends them in reverse order to 
//           the end of dest
<E> void appendList(List<E> src, List<E> dest) {
while (src.size() > 0) {
E elt = src.remove(src.size() - 1);
dest.add(elt);

}
}

What happens if src and dest refer to the same object?
– this is aliasing
– it’s easy to forget!
– watch out for shared references in inputs
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sqrt example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4 (probably want more)
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Pragmatics: Regression Testing

• Whenever you find a bug
– store the input that elicited that bug, plus the correct output
– add these to the test suite
– verify that the test suite fails
– fix the bug
– verify the fix

• Ensures that your fix solves the problem
– don’t add a test that succeeded to begin with!

• another reason to try to write tests before coding
• Protects against reversions that reintroduce bug

– it happened at least once, and it might happen again
(especially when trying to change the code in the future)
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How many tests is enough?

Correct goal should use revealing subdomains:
– one from each subdomain
– along the boundaries of each subdomain
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How many tests is enough?

Common goal is to achieve high code coverage:
– ensure test suite covers (executes) all the program
– assess quality of test suite with % coverage

• tools to measure this for you

Assumption implicit in goal:
– if high coverage, then most mistakes discovered
– far from perfect but widely used
– low code coverage is certainly bad
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Code coverage: statement coverage

int min(int a, int b) {
int r = a;
if (a <= b) {

r = a;
}
return r;

}

• Consider any test with a ≤ b  (e.g., min(1,2))
– executes every instruction
– misses the bug

• Statement coverage is not enough
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Code coverage: branch coverage

int quadrant(int x, int y) {
int ans;
if (x >= 0)
ans=1;

else
ans=2;

if (y < 0)
ans=4;

return ans;
}

• Consider two-test suite: (2,-2) and (-2,2).  Misses the bug.
• Branch coverage (all tests “go both ways”) is not enough

– here, path coverage is enough (there are 4 paths)
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Code coverage: path coverage

int countPositive(int[] a) {
int ans = 0;
for (int x : a) {
if (x > 0)
ans = 1; // should be ans += 1;

}
return ans;

}

• Consider two-test suite: [0,0] and [1].  Misses the bug.
• Or consider one-test suite: [0,1,0].  Misses the bug.

• Path coverage is enough, but no bound on path-count!
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Code coverage: what is enough?

int sumOfThree(int a, int b, int c) {
return a+b;

}

• Path coverage is not enough
– consider test suites where c is always 0

• Typically a “moot point” since path coverage is unattainable for 
realistic programs
– but do not assume a tested path is correct
– even though it is more likely correct than an untested path

• Another example: buggy abs method from earlier in lecture
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Varieties of coverage
Various coverage metrics (there are more):

Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

– may be high cost  to approach 100%
2. Coverage is just a heuristic

– we really want the revealing subdomains for the errors present
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increasing
number of
test cases 
required
(generally)
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Summary of Heuristics

• Split subdomains on boundaries appearing in the specification
• Split subdomains on boundaries appearing in the implementation
• Test examples on the boundaries
• Test special cases like nulls, 0, etc.
• Test any cases that caused bugs before (to avoid regression)
• Make sure tests exercise at least every branch & statement

On the other hand, don't confuse volume with quality of tests
– look for revealing subdomains
– want tests in every revealing subdomain not just lots of tests
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More Testing Tips

• Write tests both before and after you write the code
– (only clear-box tests need to come afterward)

• Be systematic: think through revealing subdomains & test each one

• Test your tests
– try putting a bug in to make sure the test catches it

• Test code is different from regular code
– changeability is less important; correctness is more important
– do not write any test code that is not obviously correct

• otherwise, you need to test that code too!
• unlike in regular code, it’s okay to repeat yourself in tests
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Testing Tools

• Modern development ecosystems have built-in support for testing

• Your homework introduces you to Junit
– standard framework for testing in Java

• Continuous integration
– ensure tests pass before code is submitted

• You will see more sophisticated tools in industry
– libraries for creating mock implementations of other modules
– automated tools to test on every platform
– automated tools to find severe bugs (using AI)
– …
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