
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

Testing

Administrivia

• HW3 due this evening

• HW4 out tonight
– write tests for some of the parts
– write tests for all the parts in HW5

CSE 331 Spring 2022 2

Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– think carefully through the subdomains you are using
– can then take just one example from each subdomain

• Some heuristics are useful for choosing
subdomains...

CSE 331 Spring 2022 3

Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box: specification visible, internals hidden

Example
// returns: a > b => returns a
// a < b => returns b
// a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)
(3, 3) => 3 (i.e. any input in the subdomain a = b)

4CSE 331 Spring 2022

Specification Testing Example

Write tests based on cases in the specification
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a
int find(int[] a, int value) throws Missing

Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

Have we captured all the cases?

Must hunt for multiple cases
– Including scrutiny of effects and modifies

5

([4, 5, 5], 5) => 1

CSE 331 Spring 2022

Heuristic: Clear (glass, white)-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– alternate algorithms for different cases
– behavior of the implementation not promised in the spec

• e.g., spec doesn’t promise smallest index,
but implementation does produce that

6CSE 331 Spring 2022

Combining Clear- and Black-Box

For buggy abs, what are revealing subdomains?

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else return x;

}

Example sets of subdomains:
– Which is best?

Why not:

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}

CSE 331 Spring 2022 7

{…,-6, -5, -4} {-3, -2, -1} {0, 1, 2, …}

Heuristic: Boundary Cases

Create tests at the edges of subdomains

Why?
– off-by-one bugs
– smallest & largest numbers
– empty collection

Small subdomains at the edges of the “main” subdomains have a high
probability of revealing many common errors

– also, you might have misdrawn the boundaries

8CSE 331 Spring 2022

Boundary Testing
Point is on a boundary if either:

– there exists an adjacent point in a different subdomain
– there is no point to one side

Example: function has different behavior on 1, …, n versus n+1…

Example: f(x) which requires x >= 0
– x = 0 is a boundary because x < 0 is not allowed

9CSE 331 Spring 2022

Boundary Cases: Integers
// returns: |x|
public int abs(int x) {…}

What are some values or ranges of x that might be worth probing?
– x < 0 (flips sign) or x ≥ 0 (returns unchanged)
– Around x = 0 (boundary condition)
– Specific tests: say x = -1, 0, 1

10CSE 331 Spring 2022

Boundary Testing
To define the boundary, need a notion of adjacent inputs

Example approach:
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– no adjacent point in some direction

Example: f(x) which requires x >= 0
– x = 0 is a boundary because x < 0 is not allowed

11CSE 331 Spring 2022

Boundary Testing
To define the boundary, need a notion of adjacent inputs

Example approach:
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– no adjacent point in some direction

Example: list of integers
– basic operations: push, pop, replace
– adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>, <[2,3],[4,3]>
– boundary point: [] (can’t apply pop)

12CSE 331 Spring 2022

Heuristic: Special Cases

Arithmetic
– zero
– overflow errors in arithmetic

Objects
– null
– same object passed as multiple arguments (aliasing)

All of these are common cases where bugs lurk
• you’ll find more as you encounter more bugs

13CSE 331 Spring 2022

Special Cases: Arithmetic Overflow
// returns: |x|
public int abs(int x) {…}

How about…
int x = Integer.MIN_VALUE; // x=-2147483648
System.out.println(x<0); // true
System.out.println(Math.abs(x)<0); // also true!

From Javadoc for Math.abs:
Note that if the argument is equal to the value of
Integer.MIN_VALUE, the most negative representable int
value, the result is that same value, which is negative

14CSE 331 Spring 2022

Special Cases: Duplicates & Aliases

// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest
<E> void appendList(List<E> src, List<E> dest) {
while (src.size() > 0) {
E elt = src.remove(src.size() - 1);
dest.add(elt);

}
}

What happens if src and dest refer to the same object?
– this is aliasing
– it’s easy to forget!
– watch out for shared references in inputs

15CSE 331 Spring 2022

sqrt example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4 (probably want more)

16CSE 331 Spring 2022

Pragmatics: Regression Testing

• Whenever you find a bug
– store the input that elicited that bug, plus the correct output
– add these to the test suite
– verify that the test suite fails
– fix the bug
– verify the fix

• Ensures that your fix solves the problem
– don’t add a test that succeeded to begin with!

• another reason to try to write tests before coding
• Protects against reversions that reintroduce bug

– it happened at least once, and it might happen again
(especially when trying to change the code in the future)

17CSE 331 Spring 2022

How many tests is enough?

Correct goal should use revealing subdomains:
– one from each subdomain
– along the boundaries of each subdomain

18CSE 331 Spring 2022

How many tests is enough?

Common goal is to achieve high code coverage:
– ensure test suite covers (executes) all the program
– assess quality of test suite with % coverage

• tools to measure this for you

Assumption implicit in goal:
– if high coverage, then most mistakes discovered
– far from perfect but widely used
– low code coverage is certainly bad

19CSE 331 Spring 2022

Code coverage: statement coverage

int min(int a, int b) {
int r = a;
if (a <= b) {

r = a;
}
return r;

}

• Consider any test with a ≤ b (e.g., min(1,2))
– executes every instruction
– misses the bug

• Statement coverage is not enough

20CSE 331 Spring 2022

Code coverage: branch coverage

int quadrant(int x, int y) {
int ans;
if (x >= 0)
ans=1;

else
ans=2;

if (y < 0)
ans=4;

return ans;
}

• Consider two-test suite: (2,-2) and (-2,2). Misses the bug.
• Branch coverage (all tests “go both ways”) is not enough

– here, path coverage is enough (there are 4 paths)

21CSE 331 Spring 2022

2 1

3 4

Code coverage: path coverage

int countPositive(int[] a) {
int ans = 0;
for (int x : a) {
if (x > 0)
ans = 1; // should be ans += 1;

}
return ans;

}

• Consider two-test suite: [0,0] and [1]. Misses the bug.
• Or consider one-test suite: [0,1,0]. Misses the bug.

• Path coverage is enough, but no bound on path-count!

22CSE 331 Spring 2022

Code coverage: what is enough?

int sumOfThree(int a, int b, int c) {
return a+b;

}

• Path coverage is not enough
– consider test suites where c is always 0

• Typically a “moot point” since path coverage is unattainable for
realistic programs
– but do not assume a tested path is correct
– even though it is more likely correct than an untested path

• Another example: buggy abs method from earlier in lecture

23CSE 331 Spring 2022

Varieties of coverage
Various coverage metrics (there are more):

Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

– may be high cost to approach 100%
2. Coverage is just a heuristic

– we really want the revealing subdomains for the errors present

24

increasing
number of
test cases
required
(generally)

CSE 331 Spring 2022

Summary of Heuristics

• Split subdomains on boundaries appearing in the specification
• Split subdomains on boundaries appearing in the implementation
• Test examples on the boundaries
• Test special cases like nulls, 0, etc.
• Test any cases that caused bugs before (to avoid regression)
• Make sure tests exercise at least every branch & statement

On the other hand, don't confuse volume with quality of tests
– look for revealing subdomains
– want tests in every revealing subdomain not just lots of tests

25CSE 331 Spring 2022

More Testing Tips

• Write tests both before and after you write the code
– (only clear-box tests need to come afterward)

• Be systematic: think through revealing subdomains & test each one

• Test your tests
– try putting a bug in to make sure the test catches it

• Test code is different from regular code
– changeability is less important; correctness is more important
– do not write any test code that is not obviously correct

• otherwise, you need to test that code too!
• unlike in regular code, it’s okay to repeat yourself in tests

26CSE 331 Spring 2022

Testing Tools

• Modern development ecosystems have built-in support for testing

• Your homework introduces you to Junit
– standard framework for testing in Java

• Continuous integration
– ensure tests pass before code is submitted

• You will see more sophisticated tools in industry
– libraries for creating mock implementations of other modules
– automated tools to test on every platform
– automated tools to find severe bugs (using AI)
– …

CSE 331 Spring 2022 27

