# CSE 331 <br> Software Design \& Implementation 

Kevin Zatloukal<br>Spring 2022<br>Lecture 3 - Reasoning about Loops

## Floyd Logic

- A Hoare triple is two assertions and one piece of code:
- $P$ the precondition
- $S$ the code
- $Q$ the postcondition

- A Hoare triple $\{P\} S\{Q\}$ is called valid if:
- in any state where $P$ holds, executing $S$ produces a state where $Q$ holds
- i.e., if $P$ is true before $S$, then $Q$ must be true after it
- otherwise, the triple is called invalid
- code is correct iff triple is valid


## Reasoning Forward \& Backward

- Forward:
- start with the given precondition

```
{P}S{?}
```

- fill in the strongest postcondition
- Backward
- start with the required postcondition
- fill in the weakest precondition
- Finds the "best" assertion that makes the triple valid


## Reasoning: Assignments

$$
x=\text { expr }
$$

- Forward
- add the fact " $x=$ expr" to what is known
- BUT you must fix any existing references to "x"
- Backward
- just replace any "x" in the postcondition with expr (substitution)


## Reasoning: If Statements

Forward reasoning

Backward reasoning \{\{ cond and Q1 or not cond and Q2 \}\}

```
    if (cond)
```

        \{\{ Q1 \}\}
        S1
    \{\{ Q \}\}
    else
    \{\{ Q2 \}\}
S2
$\rightarrow\{Q\}\}$
$\{\{Q\}$

## Validity with Fwd \& Back Reasoning

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:

- top assertion must imply bottom one



## Reasoning So Far

- "Turn the crank" reasoning for assignment and if statements
- All code (essentially) can be written just using:
- assignments
- if statements
- while loops
- Only part we are missing is loops
- (We will also cover function calls later.)


## Reasoning About Loops

- Loop reasoning is not as easy as with "=" and "if"
- recall Rice's Theorem (from 311): checking any non-trivial semantic property about programs is undecidable
- We need help (more information) before the reasoning again becomes a mechanical process
- That help comes in the form of a "loop invariant"


## Loop Invariant

A loop invariant is an assertion that holds at the top of the loop:

```
{{ Inv: | }}
while (cond)
    S
```

- It holds when we first get to the loop.
- It holds each time we execute $S$ and come back to the top.

Notation: I'll use "Inv:" to indicate a loop invariant.

## Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{P}}
    S1
{{ Inv: I }}
    while (cond)
        S2
    S3
{{ Q }}
```


## Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{ P }}
    S1
{{P1 }}
{{Inv: I }}
    while (cond)
        S2
    S3
{{ Q }}
```


## Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{ P }}
    S1
{{ Inv: I }}
    while (cond)
        {{ I and cond }}
        S2
        {{P2 }}
    S3
{{ Q }}
```

J Need to check that P2 implies I again (i.e., that I is true each time around)

## Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

Let's try forward reasoning...

```
{{ P }}
    S1
{{ Inv: I }}
    while (cond)
        S2
{{ I and not cond }}
    S3
{{P3 }} Need to check that P3 implies Q
{{Q }} f (i.e., Q holds after the loop)
```


## Checking Correctness of a Loop

Consider a while-loop (other loop forms not too different) with a loop invariant I.

```
\{\{ P \}\}
    S1
\{\{ Inv: I \}\}
    while (cond)
        S2
    S3
\{\{ Q \}\}
```

Informally, we need:

- I holds initially
- I holds each time around
- Q holds after we exit

Formally, we need validity of:

- $\{\{P\}\}$ S1 \{ $\{$ I \}\}
- $\{\{I$ and cond $\}\} S 2$ \{ $\operatorname{I}\}\}$
- \{\{ I and not cond \}\} S3 \{\{ Q \}\}
(can check these with backward reasoning instead)


## More on Loop Invariants

- Loop invariants are crucial information
- needs to be provided before reasoning is mechanical
- Pro Tip: always document your invariants for non-trivial loops
- don't make code reviewers guess the invariant
- Pro Tip: with a good loop invariant, the code is easy to write
- all the creativity can be saved for finding the invariant
- more on this in later lectures...


## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}
s = 0;
i = 0;
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s = b[0] + ... + b[n-1] }}
```

Equivalent to this "for" loop:

```
\(\mathrm{s}=0\);
```

$\mathrm{s}=0$;
for (int $i=0 ; i \quad!=n$; $i++$ )
for (int $i=0 ; i \quad!=n$; $i++$ )
$s=s+b[i] ;$

```
    \(s=s+b[i] ;\)
```

    s +bl
    
## Example: sum of array

Consider the following code to compute $b[0]+\ldots+b[n-1]$ :

```
{{}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s = b[0] + ... + b[n-1] }}
```


## Example: sum of array

Consider the following code to compute $b[0]+\ldots+b[n-1]$ :

```
{{}}
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s = b[0] + ... + b[n-1] }}
```


## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}}
S = 0;
i = 0;
{{s=0 and i= 0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
- (s = 0 and i = 0) implies
s = b[0] + ... + b[i-1] ?
Less formal
s = sum of first i numbers in b
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s = b[0] + ... + b[n-1] }}
```


## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
i = 0;
{{ s=0 and i=0 }}
{{ Inv: s = b[0] + ... +b[i-1] }}
while (i != n) {
    S = S + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- $\quad(s=0$ and $i=0)$ implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

Less formal
$s=$ sum of first i numbers in b

When $\mathrm{i}=0$, s needs to be the sum of the first 0 numbers, so we need $s=0$.

## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + .. + b[i-1]}}
while (i != n) {
    S = S + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1]}}
```

- ( $s=0$ and $i=0$ ) implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

More formal
$\mathrm{s}=$ sum of all $\mathrm{b}[\mathrm{k}]$ with $0 \leq \mathrm{k} \leq \mathrm{i}-1$

## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}}
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- ( $s=0$ and $i=0$ ) implies $\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1]$ ?

More formal

```
s = sum of all b[k] with 0 \leqk\leqi-1
```

$i=3(0 \leq k \leq 2): s=b[0]+b[1]+b[2]$
$i=2(0 \leq k \leq 1): s=b[0]+b[1]$
$\mathrm{i}=1(0 \leq \mathrm{k} \leq 0): \mathrm{s}=\mathrm{b}[0]$
$i=0(0 \leq k \leq-1) s=0$

## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    S = S + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- $\quad(s=0$ and $i=0)$ implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

More formal
$\mathrm{s}=$ sum of all $\mathrm{b}[\mathrm{k}]$ with $0 \leq \mathrm{k} \leq \mathrm{i}-1$
when $i=0$, we want to sum over all indexes $k$ satisfying $0 \leq k \leq-1$

There are no such indexes, so we need $\mathrm{s}=0$

## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{}
s = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... +b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- $(s=0$ and $i=0)$ implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1] ?
$$

Yes. (An empty sum is zero.)

## Example: sum of array

Consider the following code to compute $b[0]+\ldots+b[n-1]$ :

```
{{}}
    - (s=0 and i = 0) implies I
S = 0;
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    S = S + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```


## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    {{ s = b[0] + ... + b[i-1] and i != n }}
    s = s + b[i];
    i = i + 1;
    {{s=b[0] + ... + b[i-1]}}
}
{{s=b[0] + ... +b[n-1] }}
```


## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... +b[i-1] }}
while (i != n) {
    {{ s = b[0] + ... +b[i-1] and i != n }}
        s = s + b[i];
        i = i + 1;
    {{s=b[0] + ... +b[i-1]}}
}
{{s=b[0] + ... +b[n-1] }}
- \((s=0\) and \(i=0)\) implies \(I\)
- \(\quad\{\{\mathrm{I}\) and \(\mathrm{i}!=\mathrm{n}\}\} \mathrm{S}\{\{\mathrm{I}\}\}\) ?
                                {{s + b[i] = b[0] + ... + b[i] }}
                                {{s=b[0] + ... +b[i] }}
```


## Example: sum of array

Consider the following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... + b[i-1] and not (i != n) }}
{{s=b[0] + ... +b[n-1]}}
```

- $(\mathrm{s}=0$ and $\mathrm{i}=0)$ implies I
- $\quad\{\{$ I and $\mathrm{i}!=\mathrm{n}\}\} \mathrm{S}\{\{\mathrm{I}\}\}$
- $\{\{$ I and not (i ! = n) \}\} implies

$$
\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1] \text { ? }
$$

## Example: sum of array

Consider the following code to compute $b[0]+\ldots+b[n-1]$ :

```
{{}}
s = 0;
i = 0;
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    s = s + b[i];
    i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}
```

- $(s=0$ and $i=0)$ implies $I$
- $\quad\{\{$ I and $\mathrm{i}!=\mathrm{n}\}\}$ S $\{\{\mathrm{I}\}\}$
- $\quad\{\{\mathrm{I}$ and $\mathrm{i}=\mathrm{n}\}\}$ implies $Q$

These three checks verify that the outermost triple is valid (i.e., that the code is correct).

## Termination

- Technically, this analysis does not check that the code terminates
- it shows that the postcondition holds if the loop exits
- but we never showed that the loop actually exits
- However, that follows from an analysis of the running time
- e.g., if the code runs in $O\left(n^{2}\right)$ time, then it terminates
- an infinite loop would be O(infinity)
- any finite bound on the running time proves it terminates
- It is normal to also analyze the running time of code we write, so we get termination already from that analysis.


## Example HW problem

The following code to compute b[0] + ... + b[n-1]:

```
{{}}
    s = 0;
    {{___}}
    i = 0;
{{___}}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
{{___}}
    s = s + b[i];
    {{___}}
    i = i + 1;
    {{___}
}
{{___}}
{{s=b[0] + ... +b[n-1] }}
```


## Example HW problem

The following code to compute b[0] + ... + b[n-1]:

```
    {{}}
    s = 0;
{{__ s=0
```

$\qquad$

``` \}\}
```


## Are we done?

```
\(i=0\);
\(\left\{\left\{\_s=0\right.\right.\) and \(\left.\left.i=0 \_\right\}\right\}\)
\(\{\{\) Inv: \(s=b[0]+\ldots+b[i-1]\}\}\)
while (i ! = n) \{
\(\uparrow\{\{\ldots \quad \mathrm{s}+\mathrm{b}[\mathrm{i}]=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}] \ldots \ldots\}\) or equiv \(\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1]\}\}\)
s = s + b[i];
\(\{\{\ldots \ldots \mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}] \ldots\)
\(i=i+1 ;\)
\(\{\{\ldots \ldots \quad \mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1]\)
``` \(\qquad\)
``` \}\}
, \}
\(\downarrow\{\{\ldots \ldots\)
``` \(\qquad\)
``` \(\{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{n}-1]\}\}\)

\section*{Warning: not just filling in blanks}

The following code to compute b[0] + ... + b[n-1]:
```

{{ }}
s = 0;
{{s=0 }}
i = 0;
l}$$
\begin{array}{l}{{{s=0\mathrm{ and i=0 }}}}\\{{{Inv: s=b[0]+\ldots+b[i-1]}}}\end{array}
$$]\mathrm{ Does invariant hold initially?
{{s=b[0] + .. + b[i-1]}}
s = s + b[i];
{{s=b[0] + ... +b[i] }}
i = i + 1;
{{s=b[0]+···+b[i-1]}}
}
{{s=b[0] + ... + b[i-1] and not (i != n) }}
{{s=b[0] + ... + b[n-1] }}

## Warning: not just filling in blanks

The following code to compute b[0] + ... $+\mathrm{b}[\mathrm{n}-1]$ :

```
{{ }}
s = 0;
{{s=0 }}
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... +b[i-1]}.
while (i != n) { Does loop body preserve invariant?
& {{s=b[0] + ... +b[i-1]}}
    s = s + b[i];
    {{s=b[0] + ... +b[i] }}
    i = i + 1;
    {{s=b[0]+... +b[i-1]}}
}
{{s=b[0] + ... + b[i-1] and not (i != n) }}
{{s=b[0] + ... + b[n-1] }}

\section*{Warning: not just filling in blanks}

The following code to compute b[0] + ... + b[n-1]:
```

{{}}
s = 0;
{{ s=0 }}
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
{{s = b[0] + ... + b[i-1] and i != n }}
s = s + b[i];
{{s=b[0] + .. + b[i-1] + b[i] and i != n }}
i = i + 1;
{{ s = b[0] + ... + b[i-2] + b[i-1] and i-1 != n }}
}
{{s=b[0]+···+b[i-1] and not (i != n) }}] Does postcondition hold on termination?
{{s=b[0] + ... +b[n-1] }}

## Warning: not just filling in blanks

The following code to compute b[0] + ... + b[n-1]:

```
{{ }}
s = 0;
{{ s=0 }}
i = 0;
{{s=0 and i=0 }}
{{ Inv: s = b[0] + ... + b[i-1] }}
while (i != n) {
    {{s=b[0] + ... + b[i-1] and i!= n }}
    s = s + b[i];
    {{s=b[0] + .. + b[i-1] + b[i] and i != n }}
    i = i + 1;
    {{s=b[0] + .. + b[i-2] + b[i-1] and i-1 != n }}
}
{{s=b[0] + ... +b[i-1] and not (i!= n) }}
{{s = b[0] + ... + b[n-1] }}

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
S = 0;
i = -1;
{{ Inv: s=b[0] + ... +b[i] }} ] Changed
while (i != n-1) {
i = i + 1;
S = S + b[i];
}
{{s=b[0] + ... +b[n-1]}}

```

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{}
s = 0;
i = -1; ] Changed from i=0
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {] Changed from n
i = i + 1;
S = S + b[i];
}
{{s=b[0] + ... +b[n-1] }}

```

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
S = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
i = i + 1;
S = s + b[i];
}
{{s=b[0] + ... +b[n-1] }}

```

Work as before:
- ( \(s=0\) and \(i=-1\) ) implies \(I\)
- I holds initially
- ( \(I\) and \(\mathrm{i}=\mathrm{n}-1\) ) implies Q
- I implies \(Q\) at exit

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
S = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}

```
```

while (i != n-1) {

```
while (i != n-1) {
    {{ s + b[i+1] = b[0] + ... + b[i+1] }}
    {{ s + b[i+1] = b[0] + ... + b[i+1] }}
    i = i + 1;
    i = i + 1;
    s = s + b[i];
    s = s + b[i];
}
}
{{s=b[0] + ... +b[n-1]}}
```

{{s=b[0] + ... +b[n-1]}}

```

\section*{Example: sum of array (attempt 2)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
s = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
i = i + 1;
s = s + b[i];
}
{{s=b[0] + ... +b[n-1] }}

```
- ( \(s=0\) and \(\mathrm{i}=-1\) ) implies I
- as before
- \(\quad\{\{I\) and i != \(\mathrm{n}-1\}\} \mathrm{S}\{\{\mathrm{I}\}\}\)
- reason backward
- ( I and \(\mathrm{i}=\mathrm{n}-1\) ) implies Q
- as before

\section*{Example: sum of array (attempt 3)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
s = 0;
i = -1;
{{ Inv: s = b[0] + .. + b[i] }}
while (i != n-1) {
s=s + b[i];
i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}

```

Suppose we miss-order the assignments to i and s...

Where does the correctness check fail?

\section*{Example: sum of array (attempt 3)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
S = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
s = s + b[i];
i = i + 1;
}
{{s=b[0] + ... +b[n-1]}}

```

Suppose we miss-order the assignments to \(i\) and s...

We can spot this bug because the invariant does not hold:
\[
\begin{aligned}
& \{\{\mathrm{s}+\mathrm{b}[\mathrm{i}]=\mathrm{b}[0]+\ldots+\mathrm{b}[i+1]\}\} \\
& \{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}+1]\}\} \\
& \{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}]\}\}
\end{aligned}
\]

First assertion is not Inv.

\section*{Example: sum of array (attempt 3)}

Consider the following code to compute b[0] + ... + b[n-1]:
```

{{ }}
S = 0;
i = -1;
{{ Inv: s = b[0] + ... + b[i] }}
while (i != n-1) {
s = s + b[i];
i = i + 1;
}
{{s=b[0] + ... +b[n-1] }}

```

Suppose we miss-order the assignments to \(i\) and s...

We can spot this bug because the invariant does not hold:
\[
\begin{aligned}
& \{\{\mathrm{s}=\mathrm{b}[0]+\ldots+\mathrm{b}[\mathrm{i}-1]+\mathrm{b}[i+1]\}\} \\
& \text { For example, if } \mathrm{i}=2 \text {, then } \\
& \\
& \quad \mathrm{s}=\mathrm{b}[0]+\mathrm{b}[1]+\mathrm{b}[2] \quad \text { vs } \\
& \mathrm{s}=\mathrm{b}[0]+\mathrm{b}[1]+\mathrm{b}[3]
\end{aligned}
\]```

