CSE 331 Software Design & Implementation

Kevin Zatloukal Spring 2022 Lecture 2 – Reasoning About Straight-Line Code

CSE 331 Spring 2022

1

Motivation for Reasoning

- Want a way to determine correctness without running the code
- Most important part of the correctness techniques
 - tools, **inspection**, testing
- You need a way to do this in interviews
 - key reason why coding interviews are done without computers
- This is not easy (see HW0)

- We will learn a set of **formal tools** for proving correctness
 - (later, this will also allow us to generate the code)
- Most professionals can do reasoning like this in their head
 - most do an informal version of what we will see
 - eventually, it will be the same for you
- Formal version has key advantages
 - teachable
 - mechanical (no intuition or creativity required)
 - necessary for hard problems
 - we turn to formal tools when problems get too hard

Formal Reasoning

- Invented by Robert Floyd and Sir Anthony Hoare
 - Floyd won the Turing award in 1978
 - Hoare won the Turing award in 1980

Tony Hoare

Robert Floyd

CSE 331 Spring 2022

Terminology of Floyd Logic

- The *program state* is the values of all the (relevant) variables
- An *assertion* is a true / false claim (proposition) about the state at a given point during execution (e.g., on line 39)
- An assertion *holds* for a program state if the claim is true when the variables have those values

- An assertion before the code is a *precondition*
 - these represent assumptions about when that code is used
- An assertion after the code is a *postcondition*
 - these represent what we want the code to accomplish

Hoare Triples

• A Hoare triple is two assertions and one piece of code:

- A Hoare triple { P } S { Q } is called valid if:
 - in any state where P holds, executing S produces a state where Q holds
 - i.e., if *P* is true before *S*, then *Q* must be true after it
 - otherwise, the triple is called invalid

Notation

- Floyd logic writes assertions in {..}
 - since Java code also has {..}, I will use {{...}}
 - $e.g., \{\{w \ge 1\}\} x = 2 * w; \{\{x \ge 2\}\}$
- Assertions are math / logic not Java
 - you can use the usual math notation
 - (e.g., = instead of == for equals)
 - purpose is communication with other humans (not computers)
 - we will need and, or, not as well
 - can also write use \land (and) \lor (or) etc.
- The Java language also has assertions (assert statements)
 - throws an exception if the condition does not evaluate true
 - we will discuss these more later in the course

Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

 $\{\{x \mid = 0\}\} y = x * x; \{\{y > 0\}\}$

Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

 $\{\{x \mid = 0\}\} y = x * x; \{\{y > 0\}\}$

Valid

• y could only be zero if x were zero (which it isn't)

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$\{\{z \mid = 1\}\} y = z * z; \{\{y \mid = z\}\}$$

Example 2

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$\{\{z \mid = 1\}\} y = z * z; \{\{y \mid = z\}\}$$

Invalid

• counterexample: z = 0

Checking Validity

- So far: decided if a Hoare triple is valid by ... hard thinking
- Soon: mechanical process for reasoning about
 - assignment statements
 - conditionals
 - [next lecture] loops
 - (all code can be understood in terms of those 3 elements)
- Can use those to check correctness in a "turn the crank" manner
- Next: a way to compare different assertions
 - useful, e.g., to compare possible preconditions

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 \Rightarrow P2), then:

- P1 is stronger than P2
- P2 is weaker than P1

Whenever P1 holds, P2 also holds

- So it is more (or at least as) "difficult" to satisfy P1
 - the program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it is a stronger set of requirements on the program state
 - P1 gives you more information about the state than P2

Examples

- $\mathbf{x} = 17$ is stronger than $\mathbf{x} > 0$
- x is prime is neither stronger nor weaker than x is odd
- x is prime and x > 2 is stronger than x is odd

Floyd Logic Facts

- Suppose {P} S {Q} is valid.
- If P1 is stronger than P, then {P1} S {Q} is valid.
- If Q1 is weaker than Q, then {P} S {Q1} is valid.
- Example:
 - Suppose P is $x \ge 0$ and P1 is $x \ge 0$
 - Suppose Q is y > 0 and Q1 is y >= 0
 - Since {{ x >= 0 }} y = x+1 {{ y > 0 }} is valid, {{ x > 0 }} y = x+1 {{ y >= 0 }} is also valid

Floyd Logic Facts

- Suppose {P} S {Q} is valid.
- If P1 is stronger than P, then {P1} S {Q} is valid.
- If Q1 is weaker than Q, then {P} S {Q1} is valid.
- Key points:
 - always okay to strengthen a precondition
 - always okay to weaken a postcondition

Floyd Logic Facts

- When is {P} ; {Q} is valid?
 - with no code in between

- Valid if any state satisfying P also satisfies Q
- I.e., if P is **stronger** than Q

Forward & Backward Reasoning

Work forward from the precondition

Work forward from the precondition

```
{{ w > 0 }}

x = 17;

{{ w > 0 and x = 17 }}

y = 42;

{{ ______}}

z = w + x + y;

{{ ______}}
```

Work forward from the precondition

Work forward from the precondition

{{ w > 0 }} x = 17; {{ w > 0 and x = 17 }} y = 42; {{ w > 0 and x = 17 and y = 42 }} z = w + x + y; {{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

Work forward from the precondition

{{ w > 0 }} x = 17; {{ w > 0 and x = 17 }} y = 42; {{ w > 0 and x = 17 and y = 42 }} z = w + x + y; {{ w > 0 and x = 17 and y = 42 }}

- Start with the **given** precondition
- Fill in the **strongest** postcondition
- For an assignment, $\mathbf{x} = \mathbf{y}$...
 - add the fact "x = y" to what is known
 - important <u>subtleties</u> here... (more on those later)
- Later: if statements and loops...

Work backward from the desired postcondition

Work backward from the desired postcondition

{{ _____}}} x = 17;{{ ______}} y = 42;{{ w + x + y < 0 }} z = w + x + y;{{ z < 0 }}

Work backward from the desired postcondition

 $\{\{ _ \}\}$ **x** = 17; $\{\{ w + x + 42 < 0 \}\}$ **y** = 42; $\{\{ w + x + y < 0 \}\}$ **z** = w + x + y; $\{\{ z < 0 \}\}$

Work backward from the desired postcondition

Backward Reasoning

- Start with the **required** postcondition
- Fill in the **weakest** precondition
- For an assignment, $\mathbf{x} = \mathbf{y}$:
 - just replace "x" with "y" in the postcondition
 - if the condition using "y" holds beforehand, then the condition with "x" will afterward since x = y then
- Later: if statements and loops...

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

{{ w > 0 }} x = 17; y = 42; z = w + x + y; {{ z > 50 }}

 $\{\{ w > 0 \}\}$ x = 17; $\{\{ w > 0 \text{ and } x=17 \}\}$ y = 42;{{ w > 0 and x=17 and y=42 }} z = w + x + y;{{ w > 0 and x=17 and y=42 and z = w + 59 }} Do the facts that are always true imply the facts we need? {{ z > 50 }} I.e., is the bottom statement weaker than the top one?

(Recall that weakening the postcondition is always okay.)

CSE 331 Spring 2022

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}
x = 17;
y = 42;
z = w + x + y;
{{ z < 0 }}</pre>

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

 $\{ \{ w < -60 \} \}$ $\{ \{ w + 17 + 42 < 0 \} \} \iff \{ \{ w < -59 \} \}$ x = 17; $\{ \{ w + x + 42 < 0 \} \}$ $\{ \{ w + x + 42 < 0 \} \}$ y = 42; $\{ \{ w + x + y < 0 \} \}$ z = w + x + y; $\{ \{ z < 0 \} \}$ The top statement of the precondition is always obay.)<math display="block"> y = 42; $\{ \{ w + x + y < 0 \} \}$ z = w + x + y; $\{ \{ z < 0 \} \}$

Combining Forward & Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

Combining Forward & Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

Combining Forward & Backward

Reasoning in either direction gives valid assertions Just need to check adjacent assertions:

• top assertion must imply bottom one

$$\left\{ \begin{array}{c} \{ P \} \} \\ S1 \\ S2 \\ \{ P1 \} \} \\ \{ Q \} \} \end{array} \right\} \left\{ \begin{array}{c} \{ Q \} \} \\ S1 \\ S1 \\ \{ Q \} \} \end{array} \right\} \left\{ \begin{array}{c} \{ Q \} \} \\ S2 \\ \{ Q \} \} \end{array} \right\} \left\{ \begin{array}{c} \{ Q \} \} \\ \{ Q \} \} \end{array} \right\} \left\{ \left\{ Q \} \} \\ S2 \\ \{ Q \} \} \end{array} \right\} \left\{ \left\{ Q \} \right\} \right\} \left\{ \left\{ Q \} \right\} \\ S2 \\ \{ Q \} \} \end{array} \right\} \left\{ \left\{ Q \} \right\} \right\} \left\{ \left\{ Q \} \right\} \right\} \left\{ \left\{ Q \} \right\} \\ S2 \\ \{ Q \} \} \\ S2 \\ \{ Q \} \} \end{array} \right\} \left\{ \left\{ Q \} \right\} \right\} \left\{ \left\{ Q \} \right\} \\ S2 \\ \{ Q \} \} \\ S2 \\ \{ Q \} \} \\ S2 \\ \{ Q \} \}$$

Subtleties in Forward Reasoning...

• Forward reasoning can fail if applied blindly...

This implies that w = 7, but that is not true!

w equals whatever x + y was before they were changed

Fix 1

- Use **subscripts** to refer to old values of the variables
- Un-subscripted variables should always mean **current** value

{{ }}

$$w = x + y;$$

{{ $w = x + y }$ }
 $x = 4;$
{{ $w = x_1 + y \text{ and } x = 4$ }}
 $y = 3;$
{{ $w = x_1 + y_1 \text{ and } x = 4 \text{ and } y = 3 }}$

Fix 2 (better)

• Express prior values in terms of the current value

{{ }}
w = **x** + **y**;
{{ w = x + y }}
x = **x** + 4;
{{ w = x₁ + y and x = x₁ + 4 }} Now, x₁ = x - 4

$$\Rightarrow$$
 {{ w = x - 4 + y }}
So w = x₁ + y \Leftrightarrow w = x - 4 + y

Note for updating variables, e.g., $\mathbf{x} = \mathbf{x} + \mathbf{4}$:

- Backward reasoning just substitutes new value (no change)
- Forward reasoning requires you to invert the "+" operation

Forward vs. Backward

- Forward reasoning:
 - Find strongest postcondition
 - Intuitive: "simulate" the code in your head
 - BUT you need to change facts to refer to *prior values*
 - Inefficient: Introduces many irrelevant facts
 - usually need to weaken as you go to keep things sane
- Backward reasoning
 - Find weakest precondition
 - Formally simpler
 - Efficient
 - (Initially) unintuitive

Forward reasoning

{{ P }}
if (cond)
 S1
else
 S2
{{ ? }}


```
{{ P }}
if (cond)
    {{ P and cond }}
    S1
    {{ P1 }}
else
    {{ Pand not cond }}
    s2
    {{ P2 }}
{{ ? }}
```

Forward reasoning

{{ P }}
if (cond)
 {{ P and cond }}
 S1
 {{ P1 }}
else
 {{ P and not cond }}
 S2
 {{ P2 }}
 {{ P1 or P2 }}

Backward reasoning

{{ ? }}
if (cond)
 S1
else
 S2
{{ Q }}

Backward reasoning

Backward reasoning

Backward reasoning {{ cond and Q1 or not cond and Q2 }} if (cond) — {{ Q1 }} S1 $\{\{ Q \}\}$ else {{ Q2 }} S2 {{ Q }} {{ Q }}

Forward reasoning

{{ }}
if (x >= 0)
 {{ x >= 0 }}
 y = x;
 {{ x >= 0 and y = x }}
 Warning: many write {{ y >= 0 }} here
 That is true but it is *strictly* weaker.
 (It includes cases where y != x)
 {{ x < 0 }}
 y = -x;
 {{ x < 0 and y = -x }}
 {{ x < 0 and y = -x }}
</pre>

Forward reasoning Backward reasoning {{ }} {{ ? }} if $(x \ge 0)$ if $(x \ge 0)$ $\{\{x \ge 0\}\}$ y = x;else y = x; $\{\{x \ge 0 \text{ and } y = x\}\}$ y = -x; $\{\{ y = |x| \}\}$ else $\{\{x < 0\}\}$ y = -x; $\{\{x < 0 \text{ and } y = -x\}\}$ $\{\{ y = |x| \}\}$

Forward reasoning Backward reasoning {{ }} {{ ? }} if $(x \ge 0)$ if $(x \ge 0)$ $\{\{x \ge 0\}\}$ \rightarrow {{ y = |x| }} y = x; $\{\{x \ge 0 \text{ and } y = x\}\}$ else else $\{\{x < 0\}\}$ → {{ y = |x| }} $\{\{ y = |x| \}\}$ y = -x; $\{\{x < 0 \text{ and } y = -x\}\}$ $\{\{ y = |x| \}\}$

y = x;

V = -X;

Forward reasoning **Backward reasoning** {{ }} {{ ? }} if $(x \ge 0)$ $\{\{x \ge 0\}\}$ y = x;y = x; $\{\{x \ge 0 \text{ and } y = x\}\}$ else else $\{\{x < 0\}\}$ y = -x; $\{\{x < 0 \text{ and } y = -x \}\}$ $\{\{ y = |x| \}\}$ $\{\{ y = |x| \}\}$

if $(x \ge 0)$ \uparrow {{ x = |x| }} $\{\{ y = |x| \}\}$ ↑ {{ -x = |x| }} y = -x; $\{\{ y = |x| \}\}$

Forward reasoning Backward reasoning {{ }} {{ ? }} if $(x \ge 0)$ if $(x \ge 0)$ $\{\{x \ge 0\}\}$ {{ x >= 0 }} y = x;y = x; $\{\{x \ge 0 \text{ and } y = x\}\}$ $\{\{ y = |x| \}\}$ else else $\{\{x < 0\}\}$ $\{\{x \le 0\}\}$ y = -x;y = -x; $\{\{x < 0 \text{ and } y = -x \}\}$ $\{\{ y = |x| \}\}$ $\{\{ y = |x| \}\}$ $\{\{ y = |x| \}\}$

Forward reasoning {{ }} if $(x \ge 0)$ $\{\{x \ge 0\}\}$ y = x; $\{\{x \ge 0 \text{ and } y = x\}\}$ else $\{\{x < 0\}\}$ y = -x; $\{\{x < 0 \text{ and } y = -x \}\}$ $\{\{ y = |x| \}\}$

Backward reasoning $\{\{ (x \ge 0 \text{ and } x \ge 0) \text{ or } \}$ $(x < 0 \text{ and } x \le 0) \}$ if $(x \ge 0)$ ---- {{ x >= 0 }} y = x; $\{\{ y = |x| \}\}$ else ___ {{ x <= 0 }} y = -x; $\{\{ y = |x| \}\}$ $\{\{ y = |x| \}\}$

Forward reasoning	Backward reasoning
{{ }}	{{ x >= 0 or x < 0 }}
$11 (x \ge 0)$	$lt (x \ge 0)$
{{ x >= 0 }}	$\{\{ x \ge 0 \}\}$
у = х;	y = x;
{{ x >= 0 and y = x }}	$\{\{ y = x \}\}$
else	else
{{ x < 0 }}	{{ x <= 0 }}
y = -x;	y = -x;
{{ x < 0 and y = -x }}	$\{\{ y = x \}\}$
$\{\{ y = x \}\}$	$\{\{ y = x \}\}$

Forward reasoning Backward reasoning {{ }} {{ }} if $(x \ge 0)$ if $(x \ge 0)$ $\{\{x \ge 0\}\}$ {{ x >= 0 }} y = x;y = x; $\{\{x \ge 0 \text{ and } y = x\}\}$ $\{\{ y = |x| \}\}$ else else $\{\{x < 0\}\}$ $\{\{x \le 0\}\}$ y = -x;y = -x; $\{\{x < 0 \text{ and } y = -x \}\}$ $\{\{ y = |x| \}\}$ $\{\{ y = |x| \}\}$ $\{\{ y = |x| \}\}$

Next time: Loops...