
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

Lecture 2 – Reasoning About Straight-Line Code

CSE 331 Spring 2022 1

Motivation for Reasoning

• Want a way to determine correctness without running the code

• Most important part of the correctness techniques
– tools, inspection, testing

• You need a way to do this in interviews
– key reason why coding interviews are done without computers

• This is not easy (see HW0)

CSE 331 Spring 2022 2

Our Approach

• We will learn a set of formal tools for proving correctness
– (later, this will also allow us to generate the code)

• Most professionals can do reasoning like this in their head
– most do an informal version of what we will see
– eventually, it will be the same for you

• Formal version has key advantages
– teachable
– mechanical (no intuition or creativity required)
– necessary for hard problems

• we turn to formal tools when problems get too hard

CSE 331 Spring 2022 3

Formal Reasoning

• Invented by Robert Floyd and Sir Anthony Hoare
– Floyd won the Turing award in 1978
– Hoare won the Turing award in 1980

CSE 331 Spring 2022 4
picture from Wikipedia

Tony HoareRobert Floyd

By%20https:/amturing.acm.org/award_winners/floyd_3720707.cfm,%20Fair%20use,%20https:/en.wikipedia.org/w/index.php?curid=59539154

Terminology of Floyd Logic

• The program state is the values of all the (relevant) variables

• An assertion is a true / false claim (proposition) about the state
at a given point during execution (e.g., on line 39)

• An assertion holds for a program state if the claim is true when
the variables have those values

• An assertion before the code is a precondition
– these represent assumptions about when that code is used

• An assertion after the code is a postcondition
– these represent what we want the code to accomplish

CSE 331 Spring 2022 5

Hoare Triples

• A Hoare triple is two assertions and one piece of code:
{ P } S { Q }

– P the precondition
– S the code
– Q the postcondition

• A Hoare triple { P } S { Q } is called valid if:
– in any state where P holds,

executing S produces a state where Q holds
– i.e., if P is true before S, then Q must be true after it
– otherwise, the triple is called invalid

CSE 331 Spring 2022 6

specification
method body

code is correct iff triple is valid

Notation
• Floyd logic writes assertions in {..}

– since Java code also has {..}, I will use {{…}}
– e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math / logic not Java
– you can use the usual math notation

• (e.g., = instead of == for equals)
– purpose is communication with other humans (not computers)
– we will need and, or, not as well

• can also write use ⋀ (and) ⋁ (or) etc.

• The Java language also has assertions (assert statements)
– throws an exception if the condition does not evaluate true
– we will discuss these more later in the course

CSE 331 Spring 2022 7

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

CSE 331 Spring 2022 8

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

Valid
• y could only be zero if x were zero (which it isn’t)

CSE 331 Spring 2022 9

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

CSE 331 Spring 2022 10

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

Invalid
• counterexample: z = 0

CSE 331 Spring 2022 11

Checking Validity

• So far: decided if a Hoare triple is valid by ... hard thinking

• Soon: mechanical process for reasoning about
– assignment statements
– conditionals
– [next lecture] loops
– (all code can be understood in terms of those 3 elements)

• Can use those to check correctness in a “turn the crank” manner

• Next: a way to compare different assertions
– useful, e.g., to compare possible preconditions

CSE 331 Spring 2022 12

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 ⇒ P2), then:
– P1 is stronger than P2
– P2 is weaker than P1

Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1

– the program states where P1 holds are a subset of the
program states where P2 holds

• So P1 puts more constraints on program states
• So it is a stronger set of requirements on the program state

– P1 gives you more information about the state than P2

CSE 331 Spring 2022

P1 P2

13

Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd

• x is prime and x > 2 is stronger than x is odd

CSE 331 Spring 2022 14

Floyd Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Example:
– Suppose P is x >= 0 and P1 is x > 0
– Suppose Q is y > 0 and Q1 is y >= 0
– Since {{ x >= 0 }} y = x+1 {{ y > 0 }} is valid,

{{ x > 0 }} y = x+1 {{ y >= 0 }} is also valid

CSE 331 Spring 2022 15

P1 P

Q Q1

Floyd Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Key points:
– always okay to strengthen a precondition
– always okay to weaken a postcondition

CSE 331 Spring 2022 16

P1 P

Q Q1

Floyd Logic Facts

• When is {P} ; {Q} is valid?
– with no code in between

CSE 331 Spring 2022 17

P Q

• Valid if any state satisfying P also satisfies Q
• I.e., if P is stronger than Q

Forward & Backward Reasoning

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ _________________________________ }}

CSE 331 Spring 2022 19

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ _________________________________ }}

CSE 331 Spring 2022 20

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ _________________________________ }}

CSE 331 Spring 2022 21

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

CSE 331 Spring 2022 22

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}

CSE 331 Spring 2022 23

Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...

CSE 331 Spring 2022 24

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2022 25

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2022 26

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2022 27

Example of Backward Reasoning

Work backward from the desired postcondition

{{ w + 17 + 42 < 0 }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2022 28

Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the

condition with “x” will afterward since x = y then

• Later: if statements and loops...

CSE 331 Spring 2022 29

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

{{ w > 0 }}
x = 17;

y = 42;

z = w + x + y;

{{ z > 50 }}

CSE 331 Spring 2022 30

Example of Forward Reasoning

{{ w > 0 }}
x = 17;

{{ w > 0 and x=17 }}
y = 42;

{{ w > 0 and x=17 and y=42 }}
z = w + x + y;

{{ w > 0 and x=17 and y=42 and z = w + 59 }}

{{ z > 50 }}

CSE 331 Spring 2022 31

Do the facts that are always true
imply the facts we need?

I.e., is the bottom statement
weaker than the top one?

(Recall that weakening the postcondition is always okay.)

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}
x = 17;

y = 42;

z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2022 32

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}

{{ w + 17 + 42 < 0 }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2022 33

Do the facts that are always true
imply the facts we need?

I.e., is the top statement
stronger than the bottom one?

⟺ {{ w < -59 }}

(Recall that strengthening the precondition is always okay.)

Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

{{ P }}
S1

S2

{{ Q }}

CSE 331 Spring 2022 34

Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

{{ P }}
S1

{{ P1 }}
{{ Q1 }}
S2

{{ Q }}

CSE 331 Spring 2022 35

Valid provided P1 implies Q1

Combining Forward & Backward

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:
• top assertion must imply bottom one

{{ P }} {{ P }}
S1 {{ Q1 }}
S2 S1

{{ P1 }} S2

{{ Q }} {{ Q }}

CSE 331 Spring 2022 36

{{ P }}
S1

{{ P1 }}
{{ Q1 }}
S2

{{ Q }}

Subtleties in Forward Reasoning...

• Forward reasoning can fail if applied blindly...

{{ }}
w = x + y;

{{ w = x + y }}
x = 4;

{{ w = x + y and x = 4 }}
y = 3;

{{ w = x + y and x = 4 and y = 3 }}

This implies that w = 7, but that is not true!
– w equals whatever x + y was before they were changed

CSE 331 Spring 2022 37

Fix 1

• Use subscripts to refer to old values of the variables
• Un-subscripted variables should always mean current value

{{ }}
w = x + y;

{{ w = x + y }}
x = 4;

{{ w = x1 + y and x = 4 }}
y = 3;

{{ w = x1 + y1 and x = 4 and y = 3 }}

CSE 331 Spring 2022 38

Fix 2 (better)

• Express prior values in terms of the current value

{{ }}
w = x + y;

{{ w = x + y }}
x = x + 4;

{{ w = x1 + y and x = x1 + 4 }}

Note for updating variables, e.g., x = x + 4:
• Backward reasoning just substitutes new value (no change)
• Forward reasoning requires you to invert the “+” operation

CSE 331 Spring 2022 39

Now, x1 = x - 4
So w = x1 + y ⟺ w = x - 4 + y⇒ {{ w = x - 4 + y }}

Forward vs. Backward

• Forward reasoning:
– Find strongest postcondition
– Intuitive: “simulate” the code in your head

• BUT you need to change facts to refer to prior values
– Inefficient: Introduces many irrelevant facts

• usually need to weaken as you go to keep things sane

• Backward reasoning
– Find weakest precondition
– Formally simpler
– Efficient
– (Initially) unintuitive

CSE 331 Spring 2022 40

If Statements

If Statements

Forward reasoning

{{ P }}
if (cond)

S1
else

S2

{{ ? }}

CSE 331 Spring 2022 42

If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

else

{{ P and not cond }}
S2

{{ ? }}

CSE 331 Spring 2022 43

If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

{{ P1 }}
else

{{ P and not cond }}
S2

{{ P2 }}
{{ ? }}

CSE 331 Spring 2022 44

If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

{{ P1 }}
else

{{ P and not cond }}
S2

{{ P2 }}
{{ P1 or P2 }}

CSE 331 Spring 2022 45

If Statements

CSE 331 Spring 2022 46

Backward reasoning

{{ ? }}
if (cond)

S1
else

S2

{{ Q }}

If Statements

CSE 331 Spring 2022 47

Backward reasoning

{{ ? }}
if (cond)

S1

{{ Q }}
else

S2

{{ Q }}
{{ Q }}

If Statements

CSE 331 Spring 2022 48

Backward reasoning

{{ ? }}
if (cond)

{{ Q1 }}
S1

{{ Q }}
else

{{ Q2 }}
S2

{{ Q }}
{{ Q }}

If Statements

CSE 331 Spring 2022 49

Backward reasoning
{{ cond and Q1 or

not cond and Q2 }}
if (cond)

{{ Q1 }}
S1

{{ Q }}
else

{{ Q2 }}
S2

{{ Q }}
{{ Q }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

y = x;

else
y = -x;

{{ ? }}

CSE 331 Spring 2022 50

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

else

{{ x < 0 }}
y = -x;

{{ ? }}

CSE 331 Spring 2022 51

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ ? }}

CSE 331 Spring 2022 52

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ (x >= 0 and y = x) or

(x < 0 and y = -x) }}
CSE 331 Spring 2022 53

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 54

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 55

Warning: many write {{ y >= 0 }} here

That is true but it is strictly weaker.
(It includes cases where y != x)

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 56

Backward reasoning

{{ ? }}
if (x >= 0)

y = x;
else

y = -x;

{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 57

Backward reasoning

{{ ? }}
if (x >= 0)

y = x;

{{ y = |x| }}
else

y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 58

Backward reasoning

{{ ? }}
if (x >= 0)

{{ x = |x| }}
y = x;

{{ y = |x| }}
else

{{ -x = |x| }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 59

Backward reasoning

{{ ? }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 60

Backward reasoning
{{ (x >= 0 and x >= 0) or

(x < 0 and x <= 0) }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 61

Backward reasoning

{{ x >= 0 or x < 0 }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 62

Backward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

Next time: Loops...

