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Motivation for Reasoning

• Want a way to determine correctness without running the code

• Most important part of the correctness techniques
– tools, inspection, testing

• You need a way to do this in interviews
– key reason why coding interviews are done without computers

• This is not easy (see HW0)
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Our Approach

• We will learn a set of formal tools for proving correctness
– (later, this will also allow us to generate the code)

• Most professionals can do reasoning like this in their head
– most do an informal version of what we will see
– eventually, it will be the same for you

• Formal version has key advantages
– teachable
– mechanical (no intuition or creativity required)
– necessary for hard problems

• we turn to formal tools when problems get too hard
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Formal Reasoning

• Invented by Robert Floyd and Sir Anthony Hoare
– Floyd won the Turing award in 1978
– Hoare won the Turing award in 1980
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Terminology of Floyd Logic

• The program state is the values of all the (relevant) variables

• An assertion is a true / false claim (proposition) about the state 
at a given point during execution (e.g., on line 39)

• An assertion holds for a program state if the claim is true when 
the variables have those values

• An assertion before the code is a precondition
– these represent assumptions about when that code is used

• An assertion after the code is a postcondition
– these represent what we want the code to accomplish
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Hoare Triples

• A Hoare triple is two assertions and one piece of code:
{ P } S { Q }

– P the precondition
– S the code
– Q the postcondition 

• A Hoare triple { P } S { Q } is called valid if:
– in any state where P holds,

executing S produces a state where Q holds
– i.e., if P is true before S, then Q must be true after it
– otherwise, the triple is called invalid
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method body

code is correct iff triple is valid



Notation
• Floyd logic writes assertions in {..}

– since Java code also has {..}, I will use {{…}}
– e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math / logic not Java
– you can use the usual math notation

• (e.g., = instead of == for equals)
– purpose is communication with other humans (not computers)
– we will need and, or, not as well

• can also write use ⋀ (and) ⋁ (or) etc.

• The Java language also has assertions (assert statements)
– throws an exception if the condition does not evaluate true
– we will discuss these more later in the course
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Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}
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Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

Valid
• y could only be zero if x were zero (which it isn’t)
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Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}
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Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

Invalid
• counterexample: z = 0
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Checking Validity

• So far: decided if a Hoare triple is valid by ... hard thinking

• Soon: mechanical process for reasoning about
– assignment statements
– conditionals
– [next lecture] loops
– (all code can be understood in terms of those 3 elements)

• Can use those to check correctness in a “turn the crank” manner

• Next: a way to compare different assertions
– useful, e.g., to compare possible preconditions
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Weaker vs. Stronger Assertions

If P1 implies P2  (written P1 ⇒ P2), then:
– P1 is stronger than P2
– P2 is weaker than P1

Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1 

– the program states where P1 holds are a subset of the 
program states where P2 holds

• So P1 puts more constraints on program states
• So it is a stronger set of requirements on the program state

– P1 gives you more information about the state than P2
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Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd

• x is prime and x > 2 is stronger than x is odd
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Floyd Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Example:
– Suppose P is x >= 0 and P1 is x > 0
– Suppose Q is y > 0 and Q1 is y >= 0
– Since {{ x >= 0 }} y = x+1 {{ y > 0 }} is valid,

{{ x > 0 }} y = x+1 {{ y >= 0 }} is also valid
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Floyd Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Key points:
– always okay to strengthen a precondition
– always okay to weaken a postcondition
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Floyd Logic Facts

• When is {P} ; {Q} is valid?
– with no code in between
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• Valid if any state satisfying P also satisfies Q
• I.e., if P is stronger than Q



Forward & Backward Reasoning



Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ _________________________________ }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ _________________________________ }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ _________________________________ }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}
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Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ z < 0 }}
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ w + 17 + 42 < 0 }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}
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Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the 

condition with “x” will afterward since x = y then

• Later: if statements and loops...
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Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

{{ w > 0 }}
x = 17;

y = 42;

z = w + x + y;

{{ z > 50 }}
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Example of Forward Reasoning

{{ w > 0 }}
x = 17;

{{ w > 0 and x=17 }}
y = 42;

{{ w > 0 and x=17 and y=42 }}
z = w + x + y;

{{ w > 0 and x=17 and y=42 and z = w + 59 }}

{{ z > 50 }}
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Do the facts that are always true
imply the facts we need?

I.e., is the bottom statement
weaker than the top one?

(Recall that weakening the postcondition is always okay.)



Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}
x = 17;

y = 42;

z = w + x + y;

{{ z < 0 }}
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Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}

{{ w + 17 + 42 < 0 }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}
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Do the facts that are always true
imply the facts we need?

I.e., is the top statement
stronger than the bottom one?

⟺ {{ w < -59 }}

(Recall that strengthening the precondition is always okay.)



Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

{{ P }}
S1

S2

{{ Q }}
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Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

{{ P }}
S1

{{ P1 }}
{{ Q1 }}
S2

{{ Q }}
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Valid provided P1 implies Q1



Combining Forward & Backward

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:
• top assertion must imply bottom one

{{ P }} {{ P }} 
S1 {{ Q1 }}
S2 S1

{{ P1 }} S2

{{ Q }} {{ Q }}
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{{ P1 }}
{{ Q1 }}
S2

{{ Q }}



Subtleties in Forward Reasoning...

• Forward reasoning can fail if applied blindly...

{{ }}
w = x + y;

{{ w = x + y }}
x = 4;

{{ w = x + y and x = 4 }}
y = 3;

{{ w = x + y and x = 4 and y = 3 }}

This implies that w = 7, but that is not true!
– w equals whatever x + y was before they were changed
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Fix 1

• Use subscripts to refer to old values of the variables
• Un-subscripted variables should always mean current value

{{ }}
w = x + y;

{{ w = x + y }}
x = 4;

{{ w = x1 + y and x = 4 }}
y = 3;

{{ w = x1 + y1 and x = 4 and y = 3 }}
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Fix 2 (better)

• Express prior values in terms of the current value

{{ }}
w = x + y;

{{ w = x + y }}
x = x + 4;

{{ w = x1 + y and x = x1 + 4 }}

Note for updating variables, e.g., x = x + 4:
• Backward reasoning just substitutes new value (no change)
• Forward reasoning requires you to invert the “+” operation
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Now, x1 = x - 4
So w = x1 + y ⟺ w = x - 4 + y⇒ {{ w = x - 4 + y }}



Forward vs. Backward

• Forward reasoning:
– Find strongest postcondition
– Intuitive: “simulate” the code in your head

• BUT you need to change facts to refer to prior values
– Inefficient: Introduces many irrelevant facts

• usually need to weaken as you go to keep things sane

• Backward reasoning
– Find weakest precondition
– Formally simpler
– Efficient
– (Initially) unintuitive
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If Statements



If Statements

Forward reasoning

{{ P }}
if (cond)

S1
else

S2

{{ ? }}
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If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

else

{{ P and not cond }}
S2

{{ ? }}

CSE 331 Spring 2022 43



If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

{{ P1 }}
else

{{ P and not cond }}
S2

{{ P2 }}
{{ ? }}
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If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

{{ P1 }}
else

{{ P and not cond }}
S2

{{ P2 }}
{{ P1 or P2 }}
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If Statements
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Backward reasoning

{{ ? }}
if (cond)

S1
else

S2

{{ Q }}



If Statements
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Backward reasoning

{{ ? }}
if (cond)

S1

{{ Q }}
else

S2

{{ Q }}
{{ Q }}



If Statements
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Backward reasoning

{{ ? }}
if (cond)

{{ Q1 }}
S1

{{ Q }}
else

{{ Q2 }}
S2

{{ Q }}
{{ Q }}



If Statements
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Backward reasoning
{{ cond and Q1 or

not cond and Q2 }}
if (cond)

{{ Q1 }}
S1

{{ Q }}
else

{{ Q2 }}
S2

{{ Q }}
{{ Q }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

y = x;

else
y = -x;

{{ ? }}
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If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

else

{{ x < 0 }}
y = -x;

{{ ? }}
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If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ ? }}
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If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ (x >= 0 and y = x) or

(x < 0 and y = -x) }}
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If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Warning: many write {{ y >= 0 }} here

That is true but it is strictly weaker.
(It includes cases where y != x)



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Backward reasoning

{{ ? }}
if (x >= 0)

y = x;
else

y = -x;

{{ y = |x| }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Backward reasoning

{{ ? }}
if (x >= 0)

y = x;

{{ y = |x| }}
else

y = -x;

{{ y = |x| }}
{{ y = |x| }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Backward reasoning

{{ ? }}
if (x >= 0)

{{ x = |x| }}
y = x;

{{ y = |x| }}
else

{{ -x = |x| }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Backward reasoning

{{ ? }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Backward reasoning
{{ (x >= 0 and x >= 0) or

(x < 0 and x <= 0) }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2022 61

Backward reasoning

{{ x >= 0 or x < 0 }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}



If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}
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Backward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}



Next time: Loops...


