CSE 331
Software Design & Implementation

Autumn 2022
Section 3 – ADTs, AFs, and HW3
Administrivia

• HW2 due yesterday (10/12) at 11PM!

• HW3 due next Wednesday (10/19) at 11PM!

• Any questions?
Abstract Data Types (ADTs)

• Abstraction representing some set of data
 – Meant to express the meaning/concept behind some Java class

• Different from implementation/Java fields!
 – Same ADT can have many different implementations
Abstract data types by example

Review ADT concepts through two examples:
• A Line ADT
• A Rectangle ADT

On the course website, see “Resources” → “Class and Method Specifications” for a handy guide with full details.
Abstraction Functions (AFs)

• Let’s say we have an ADT
 – And we choose some way to implement it

• How does the concrete implementation relate to our ADT?

• This is an **abstraction function**
 – Maps object implementation (our Java fields) to the abstract state
 – Ex: “How does a Triangle object from Triangle.java represent a Triangle ADT?”
 – Note: specific to implementation
Diagram

ADT specification

Abstract States

Abstraction Barrier

Fields in our Java class

Abstraction function (AF): Relationship between ADT specification and implementation
Line ADT

Concept: A line segment in the Cartesian co-ordinate plane
Line ADT: Class specification

/**
 * A Line is a mutable 2D line segment with endpoints p1 and p2.
 */

public class Line {
 ... // rep invariant, fields, methods, etc.
}

\[x \]
\[y \]
Line ADT: Representation #1

/**
 * A Line is a mutable 2D line segment with endpoints
 * p1 and p2.
 */
public class Line {
 // Abstract state is
 private Point p1, p2;
}

What is our abstraction function?
Line ADT: Representation #1

/**
 * A Line is a mutable 2D line segment with endpoints
 * p1 and p2.
 */

public class Line {
 // Abstract state is line with endpoints p1 and p2
 private Point p1, p2;
}

\[x\]
\[y\]
Line ADT: Representation #2

/**
 * A Line is a mutable 2D line segment with endpoints
 * p1 and p2.
 */
public class Line {
 // Abstract state is ___
 private int x1, x2;
 private int y1, y2;
}

What is our abstraction function?
Line ADT: Representation #2

/**
 * A Line is a mutable 2D line segment with endpoints
 * p1 and p2.
 */

public class Line {
 // Abstract state is line with endpoints (x1, y1) and (x2, y2)
 private int x1, x2;
 private int y1, y2;
}

Does this representation have any advantages over #1?
Line ADT: Representation #3

/**
 * A Line is a mutable 2D line segment with endpoints
 * p1 and p2.
 */

public class Line {
 // Abstract state is ___
 private int x1, y1;
 private double angle;
 private double len;
}

What is our abstraction function?
Line ADT: Representation #3

/**
 * A Line is a mutable 2D line segment with endpoints
 * p1 and p2.
 */
public class Line {
 // Abstract state is line with endpoints (x1, y1) and
 // (x1 + len * cos(angle), y1 + len * sin(angle))
 private int x1, y1;
 private double angle;
 private double len;
}

Does this representation have any advantages over #1?
Try it yourself!

Write your own specification of a Rectangle ADT on the handout.

Then give two different possible representations for your Rectangle ADT and write abstraction functions for them.
In HW3, you will be writing methods in the `Natural` class.

Let’s look at the specification:

```java
/**
 * Represents an immutable, non-negative integer value
 * along with a base in which to print its digits, which we
 * can think of as a pair (base, value).
 * For example, (2, 5) represents the integer 5 (in decimal),
 * but it will show its digits as 101 (in binary) when
 * printed.
 * We require that the base is at least 2 and at most 36 for
 * simplicity.
 */
public class Natural { ... }
```
Different Base Examples

Let’s take the value 10. We can use the constructor:

```java
public Natural(int base, int value) {...}

new Natural(10, 10) => “10”
new Natural(2, 10) => “1010”
new Natural(3, 10) => “101”
new Natural(4, 10) => “22”
```
Now, let’s look at the fields, RI, and AF:

// Shorthand: b = this.base, D = this.digits, and
// n = this.digits.length

// RI: 2 <= b <= 36 and D != null and n >= 1 and
// if n > 1, then D[n-1] != 0 (no leading zeros) and
// for i = 0 .. n-1, we have 0 <= D[i] < b

// AF(this) = (b, D[0] + D[1] b + D[2] b^2 + ... +
// D[n-1] b^{n-1})

private final int base;
private final int[] digits;

new Natural(2, 10) => [0, 1, 0, 1] => “1010”
leftShift()

Now let’s take a look at the left shift method:

```java
/**
 * Produces a number whose digits, in this base, are the result of taking the
 * digits of this number and shifting them to the left m positions, writing
 * zeros in the now empty positions.
 * @return (this.base, this.value * this.base^m)
 */
public Natural leftShift(int m) { ... }
```

How do we multiply something by 10 in base-10? Add a zero

How do we multiply something by 2 in binary? Add a zero

How do we multiply something by 100 (10^2) in decimal? Add two zeroes

What’s the pattern? How can we do this in our code?
Now let’s take a look at the left shift code:

```java
public Natural leftShift(int m) {
    int[] digits = new int[this.digits.length + m];
    System.arraycopy(this.digits, 0, digits, m, this.digits.length);
    return new Natural(this.base, digits);
}
```

new Natural(10, 36) => [6,3] => leftShift(2)
=> ?
leftShift()

Now let’s take a look at the left shift code:

```java
public Natural leftShift(int m) {
    int[] digits = new int[this.digits.length + m];
    System.arraycopy(this.digits, 0, digits, m, this.digits.length);
    return new Natural(this.base, digits);
}
```

new Natural(10, 36) => [6,3] => leftShift(2)
=> [0,0,6,3] = (10,3600)
Now let’s take a look at the left shift code:

```java
public Natural leftShift(int m) {
    int[] digits = new int[this.digits.length + m];
    System.arraycopy(this.digits, 0, digits, m, this.digits.length);
    return new Natural(this.base, digits);
}
```

new Natural(10, 36) => [6,3] => leftShift(2) => [0,0,6,3] = (10,3600)

new Natural(2, 10) => [0,1,0,1] => leftShift(3) => ?
Now let’s take a look at the left shift code:

```java
public Natural leftShift(int m) {
    int[] digits = new int[this.digits.length + m];
    System.arraycopy(this.digits, 0, digits, m, this.digits.length);
    return new Natural(this.base, digits);
}
```

new Natural(10, 36) => [6,3] => leftShift(2) => [0,0,6,3] = (10,3600)

new Natural(2, 10) => [0,1,0,1] => leftShift(3) => [0,0,0,0,1,0,1] = (2,80)

Does this make sense?
public int getValue() {

 int i = this.digits.length - 1;
 int j = 0;
 int val = this.digits[i];

 // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
 // i + j = n - 1, where D = this.digits,
 // n = this.digits.length, and b = this.base
 while (j != this.digits.length - 1) {
 j = j + 1;
 i = i - 1;
 val = val * this.base + this.digits[i];
 }

 return val;
}
Let’s first prove that the invariant is established before the loop:

```java
public int getValue() {
    {{ RI, which includes n >= 1 }}
    int i = this.digits.length - 1;
    {{ ? }}
    int j = 0;

    int val = this.digits[i];

    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    // i + j = n - 1, where D = this.digits,
    // n = this.digits.length, and b = this.base
    ...
}
```
Proving `getValue()`

Let’s first prove that the invariant is established before the loop:

```java
public int getValue() {
    {{ RI, which includes n >= 1 }}
    int i = this.digits.length - 1;
    {{ n >= 1 and i = n - 1 }}
    int j = 0;
    {{ ? }}
    int val = this.digits[i];

    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //     i + j = n - 1, where D = this.digits,
    //     n = this.digits.length, and b = this.base

    ...
}
```
Proving `getValue()`

Let’s first prove that the invariant is established before the loop:

```java
public int getValue() {
    {{ RI, which includes n >= 1 }}
    int i = this.digits.length - 1;
    {{ n >= 1 and i = n - 1 }}
    int j = 0;
    {{ n >= 1 and i = n - 1 and j = 0}}
    int val = this.digits[i];
    {{ ? }}

    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //      i + j = n - 1, where D = this.digits,
    //      n = this.digits.length, and b = this.base
    ...
}
```
Let’s first prove that the invariant is established before the loop:

```java
public int getValue() {
    {{ RI, which includes n >= 1 }}
    int i = this.digits.length - 1;
    {{ n >= 1 and i = n - 1 }}
    int j = 0;
    {{ n >= 1 and i = n - 1 and j = 0 }}
    int val = this.digits[i];
    {{ n >= 1 and i = n - 1 and j = 0 and val = D[i] }}

    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //     i + j = n - 1, where D = this.digits,
    //     n = this.digits.length, and b = this.base

    ...}
```

Does this imply the invariant?
Proving `getValue()`

Let’s prove the part after the loop:

```java
public int getValue() {
    ...
    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //      i + j = n - 1, where D = this.digits,
    //      n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        ...
    }  
    {{ ? }}
    return val;
}
```
Proving `getValue()`

Let’s prove the part after the loop:

```java
public int getValue() {
    ...
    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //      i + j = n - 1, where D = this.digits,
    //      n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        ...
    }
    {{ val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and i+j = n-1
      and j = n-1 }}
    ⇔ {{ ? }}

    return val;
}
```
Proving `getValue()`

Let’s prove the part after the loop:

```java
public int getValue() {
    ...
    // Inv: \( \text{val} = D[i] \cdot b^0 + D[i+1] \cdot b^1 + \ldots + D[n-1] \cdot b^j \) and
    // \( i + j = n - 1 \), where \( D = \text{this.digits} \),
    // \( n = \text{this.digits.length} \), and \( b = \text{this.base} \)
    while (j != this.digits.length - 1) {
        ...
    }
    {{
        \( \text{val} = D[i] \cdot b^0 + D[i+1] \cdot b^1 + \ldots + D[n-1] \cdot b^j \) and \( i+j = n-1 \)
        and \( j = n-1 \) }
    } \Leftrightarrow
    {{
        \( \text{val} = D[0] \cdot b^0 + D[1] \cdot b^1 + \ldots + D[n-1] \cdot b^{n-1} \) and \( i=0 \)
        and \( j = n-1 \) }
    }
    // Post: \( \text{val} = D[0] + D[1] \cdot b + D[2] \cdot b^2 + \ldots + D[n-1] \cdot b^{n-1} \)
    return val;
}
```
Proving `getValue()`

Now let's prove the loop body:

```java
public int getValue() {
    ...
    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //     i + j = n - 1, where D = this.digits,
    //     n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        {{ ? }}
        j = j + 1;
        i = i - 1;
        val = val * this.base + this.digits[i];
    }
    ...
}
```
Proving `getValue()`

Now let’s prove the loop body:

```java
public int getValue() {
    ...
    // Inv: val = D[i] \cdot b^0 + D[i+1] \cdot b^1 + \ldots + D[n-1] \cdot b^j and
    //      i + j = n - 1, where D = this.digits,
    //      n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        { { val = D[i] \cdot b^0 + D[i+1] \cdot b^1 + \ldots + D[n-1] \cdot b^j and i+j = n-1
            and j != n-1 } }
        j = j + 1;
        { { ? } }
        i = i - 1;

        val = val * this.base + this.digits[i];
    }
    ...
}
```
Proving `getValue()`

Now let’s prove the loop body:

```java
public int getValue() {

...  
  // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
  //      i + j = n - 1, where D = this.digits, 
  //      n = this.digits.length, and b = this.base
  while (j != this.digits.length - 1) {
    {{ val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and i+j = n-1 
      and j != n-1 }}
    j = j + 1;
    {{ val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^{j-1} and i+j-1 = n-1 
      and j != n }}
    i = i - 1;
    {{ ? }}

    val = val * this.base + this.digits[i];

  }

...  
```
Proving `getValue()`

Now let’s prove the loop body:

```java
public int getValue() {
    ...
    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //      i + j = n - 1, where D = this.digits,
    //      n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        {{ val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and i+j = n-1
          and j != n-1 }}
        j = j + 1;
        {{ val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^{j-1} and i+j-1 = n-1
          and j != n }}
        i = i - 1;
        {{ val = D[i+1] b^0 + D[i+2] b^1 + ... + D[n-1] b^{j-1} and i+j = n-1
          and j != n }}
        val = val * this.base + this.digits[i];
        {{ ? }}
    }
    ...
}
```
Proving `getValue()`

Now let’s prove the loop body:

```java
public int getValue() {
    ...
    // Inv: val = D[i] * b^0 + D[i+1] * b^1 + ... + D[n-1] * b^j and
    //     i + j = n - 1, where D = this.digits, 
    //     n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        {{ val = D[i] * b^0 + D[i+1] * b^1 + ... + D[n-1] * b^j and i+j = n-1
            and j != n-1 }}
        j = j + 1;
        {{ val = D[i] * b^0 + D[i+1] * b^1 + ... + D[n-1] * b^{j-1} and i+j-1 = n-1
            and j != n }}
        i = i - 1;
        {{ val = D[i+1] * b^0 + D[i+2] * b^1 + ... + D[n-1] * b^{j-1} and i+j = n-1
            and j != n }}
        val = val * this.base + this.digits[i];
        {{ (val - D[i]) / b = D[i+1] * b^0 + D[i+2] * b^1 + ... + D[n-1] * b^{j-1}
            and i+j = n-1 and j != n }}
        ⇔ {{ ? }}
    }
    ...
}
```
Proving `getValue()`

Now let's prove the loop body:

```java
public int getValue() {
    ...
    // Inv: val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and
    //      i + j = n - 1, where D = this.digits,
    //      n = this.digits.length, and b = this.base
    while (j != this.digits.length - 1) {
        {{
            val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^j and i+j = n-1
            and j != n-1
        }}
        j = j + 1;
        {{
            val = D[i] b^0 + D[i+1] b^1 + ... + D[n-1] b^{j-1} and i+j-1 = n-1
            and j != n
        }}
        i = i - 1;
        {{
            val = D[i+1] b^0 + D[i+2] b^1 + ... + D[n-1] b^{j-1} and i+j = n-1
            and j != n
        }}
        val = val * this.base + this.digits[i];
        {{
            (val - D[i])/b = D[i+1] b^0 + D[i+2] b^1 + ... + D[n-1] b^{j-1}
            and i+j = n-1 and j != n
        }}
        ⇔ {{
            val = D[i] + D[i+1] b^1 + ... + D[n-1] b^j and i+j = n-1 and j != n
        }}
    }
    ...
    It's correct!
    ...
}
```
Starter Code

Let’s end with skimming through the starter code and run the tests...