
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022

Modern Web GUIs

JS Example

register-js/index.js

CSE 331 Fall 2022 2

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– HTML is created in strings!
– (and other issues not mentioned so far…)

CSE 331 Fall 2022 3

ES6

From last time: Fake Classes

• JavaScript started as an OO language w/out classes

• Can do some of what we need already:

let obj = {f: (x) => x + 1};
console.log(obj.f(2)); // 3

• Use “this” to read fields of obj in obj.f

CSE 331 Fall 2022 5

Classes

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}

let f = new Foo(3); // {secretMethod: …, secretVal: …}

console.log(f.secretMethod(5)); // 8

CSE 331 Fall 2022 6

Classes

• new Foo creates an object already containing methods
– also calls the constructor

• Still has the same issue with this:

class Foo { … }

let f = new Foo(3);
let s = f.secretMethod;
console.log(s(5)); // NaN

let t = (x) => f.secretMethod(x);
console.log(t(5)); // 8

CSE 331 Fall 2022 7

JS vs Java Classes

• JS method signatures are just the name
– JS objects are just HashMaps
– field names are the keys

• Java methods signatures are name + arg types
– e.g., avg(int,int)

• JS has only one method with a given name
– language allows different numbers of arguments

• missing arguments are undefined

– can strengthen a spec by accepting a wider set of
possible input types

CSE 331 Fall 2022 8

obj.avg(3, 5)

Modules

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { … }

• Others can import using:

import { average } from ‘./filename’;

– file extension is sometimes not included

CSE 331 Fall 2022 9

ES6 Example

register-js2/…

CSE 331 Fall 2022 10

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!
– (and other issues not mentioned so far…)

CSE 331 Fall 2022 11

UI is still
in one file

TYPESCRIPT

TypeScript

• Adds type constraints to the code:
– arguments and variables

let x: number = 0;

– fields of classes (now declared)
quarter: string;

• tsc performs type checking
– outputs version with type annotations removed

CSE 331 Fall 2022 13

TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, number]
– unions: string | number
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– abbreviations: type Point = [number, number]
– …

CSE 331 Fall 2022 14

Simple Examples

points1.ts
points2.ts

15CSE 331 Fall 2022

UI Example

register-ts/…

CSE 331 Fall 2022 16

TypeScript

• Type system is unsound
– can’t promise to find prevent all errors
– can be turned off at any point with any types

•x as Foo is an unchecked cast to Foo
•x! casts to non-null version of the type (useful!)

• Full description of the language at
typescriptlang.org

CSE 331 Fall 2022 17

JSX

JSX

• Fix another problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression

CSE 331 Fall 2022 19

JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className=“..”, htmlFor=“..”, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div

CSE 331 Fall 2022 20

Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!

CSE 331 Fall 2022 21

UI is still
in one file

UI Modularity

• Key idea: break the visible UI into pieces that can
become separate components

CSE 331 Fall 2022 22

SideBar

TitleBar

MainBody

Component Tree

• App
• Title Bar
• Side Bar
• Main Body

– children…

UI Modularity

• Key idea: break the visible UI into pieces that can
become separate components
– each component should know how to turn itself

into GUI components (panels, buttons, etc.)

• Problem: How do all the pieces get put together?
– the GUI must be one tree, not many

CSE 331 Fall 2022 23

REACT

React

• Improve modularity by allowing custom tags

let app = (
<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Fall 2022 25

React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Fall 2022 26

React Example

register-react/…

CSE 331 Fall 2022 27

React Components

• Each React component renders into HTML elements

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• React components corresponds to portions of the document
– TitleBar is one subtree
– EditPane is another subtree
– App contains the two of those

CSE 331 Fall 2022 28

