
CSE 331

Software Design & Implementation

Spring 2021

Section 8 – HW8: React Canvas

CSE 331 Spring 2021 1

Agenda

• Overview of HW8 – “Connect the Dots”

• Canvas HTML object

– how to use from React

• Common React bugs & how to fix them (if we have time)

2CSE 331 Spring 2021

CSE 331 Spring 2021 3

React (JavaScript library)

• React (also known as React.js or ReactJS) is an open-source

front-end JavaScript library

• React code is made of entities called components, which allow

you to implement different UI in different classes

• Allow direct addition of HTML to the code

• Check HTML syntax (refer to the lecture material for this)

CSE 331 Spring 2021 4

HW8

HW8 Overview

• Starter code has (most of) the pieces, but not much functionality.

– Lots of hard-coded values, placeholders (console.log instead

of doing stuff), etc..

• Your job: "wire all the pieces together"

– Accept user input

– Process/parse the data

– Error check – users do weird stuff, make sure you can't

crash

– Move data between components as necessary

– Add the actual functionality in response to user input.

• Structure:

– Top-level <App> component, with three child components.

CSE 331 Spring 2021 6

HW8 Component Structure

CSE 331 Spring 2021 7

<App> <Grid>

<GridSizePicker>

<EdgeList>

Running a React App

npm: Similar to gradle, but we need to install manually the first time.

In the terminal, change directory until you're in the same place as the

"package.json" file for the project you want to run.

To Install (first time): npm install

To Run (every time): npm start

Once started, you can edit and save files and the page will

automatically reload – no need to restart. Use Control-C to shut down

when you're done developing.

8CSE 331 Spring 2021

CANVAS

• <canvas> tag: creates a blank drawing surface that you can
“draw” on with JS

– Create lines, shapes, draw images.

– Has width and height attributes to determine the size of
the drawing surface.

• We’re using <canvas> in HW8 and HW9 to draw lines/paths on
top of images (like a map of campus!)

• Javascript is going to need some kind of Canvas object in order
to call functions and draw pictures.

– How do we get this object?

CSE 331 Spring 2021 10

Example 2:

Drawing on a Canvas

Modifying HTML with JS

• JS exists to allow webpages (meaning the HTML inside

them) to change dynamically. So JS has to have a way to

access/change the HTML tags.

• Implementation: Every HTML element has an associated

JS object that the browser maintains.

– Can get a reference in JS by using the “id” attribute.

– Every tag can have an ID - value is a string that

uniquely identifies an element.

CSE 331 Spring 2021 11

HTML:

<p id="thePar">Hello, World!</p>

JS:

let parObj = document.getElementByID("thePar");

parObj.innerHTML = "Hello, 331!";

Example 2 Code

<html>

<head>

<title>2. HTML5 Canvas</title>

</head>

<body>

<script type="text/javascript">

function drawSomething() {

let canvas = document.getElementById("theCanvas");

let context = canvas.getContext("2d");

context.fillStyle = "teal";

context.fillRect(50, 50, 150, 100);

}

</script>

<button onclick="drawSomething()">Draw Something Cool</button>

<canvas id="theCanvas" width="500" height="500"></canvas>

</body>

</html>

CSE 331 Spring 2021 12

Our previous canvas code from Example 2 converted to use React!

1. Need to get a canvas object to draw like last time.

This is different in React.

a. It’s React’s job to manage the HTML for us, grabbing

something with an ID defeats that purpose and can cause

bugs.

b. In React, we use “Ref” objects instead of ID strings, but they

work similarly.
2. Write an updateCanvasImage()method to draw a rectangle

on the canvas like before.
3. Use componentDidMount() to find out when React is ready for

us to start drawing things, then call updateCanvasImage()

CSE 331 Spring 2021 13

Example 4:

React Canvas

Examples 5-6:

State and how to set it

Example 5

• State is static. We can’t change the information the app is

holding.

Example 6
• App stores a current color

• App calls setState, which causes a re-render

• React re-creates or updates the children as necessary

• New component to choose a color (red, green, blue)

CSE 331 Spring 2021 14

Creation of a component:

1. constructor (passed props) — create initial state

2. render — produce the HTML

3. componentDidMount — anything you need

to do after HTML exists in the DOM

CSE 331 Spring 2021 15

Component Life-Cycle (mounting)

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

Update of component (after setState):

1. render

2. componentDidUpdate

Removal of component (not really needed for hw8-9):

1. componentWillUnmount

CSE 331 Spring 2021 16

Component Life-Cycle (complete)

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

Example 7:

• New component that puts a title above the canvas
• Color passed to child components in props

Example 8:

• ButtonGroup uses a callback to notify App that a new color

has been chosen
• callback is passed in via props also

CSE 331 Spring 2021 17

Examples 7-8:

Props and Callbacks

The Flow

CSE 331 Spring 2021 18

color

changeColor()

<canvas>

<button>

<button>

<button>
<p>

<App />

<ColorTitle />

<TitledCanvas /> <ButtonGroup />

Summary

• Components are reusable blocks of code that allow

modular design and proper cohesion.

• Components contain other components and HTML tags

to determine how they appear on a webpage.

– React is responsible for managing the underlying

webpage.

• Data owned/controlled by a component is stored it that

component’s state.

• Data flows down from parent to child through props.

• Data flows up from child to parent through callbacks from

the child into the parent’s code.

• React notifies components of changes to their data
through lifecycle methods, like componentDidUpdate

CSE 331 Spring 2021 19

REACT BUGS

Common React Bugs

• Most common bugs in React are:

– Reading from React state before the data has been populated.

– Not properly understanding the React life cycle (the order that

things happen within your app).

• This is because of specific asynchronous updates to React’s

internal representation of the webpage.

– Note: There may be a very slight delay to updating your React

components.

• IMPORTANT: You need to be careful when updating your React

component’s state and trying to access data!

21CSE 331 Spring 2021

Debugging React Strategies

When you hit a bug…

1. Walk step by step through the order that your code runs, checking

how the state should be populated.

– Use documentation about the React lifecycle to help you figure

out which things happen in which order.

2. Put a console.log() in your methods if needed, and in

componentDidUpdate() to check when your state was

updated.

3. Last resort: Googling may be useful! Be very careful about this.

22CSE 331 Spring 2021

Bug 1 – “Read before Write”

Expected Functionality:

• Adds a canvas to the page and displays a blue rectangle

immediately.

Current Functionality:

• TypeErrorwhen the page is loaded.

24CSE 331 Spring 2021

src/1-lifecycle/Buggy.tsx

Bug 1 –The Problem

It seems like this.canvasRef.current is null, when it's supposed

to be our Canvas object.

• Why doesn't the Canvas object exist yet? Let's think about how the
<canvas> is eventually inserted into the page...

1. Our component is created and inserted into the page (in this case
by ReactDOM.render())

2. React constructs the component and then calls the component’s
render() to get the HTML tags we want.

3. React inserts those tags into the webpage and then sets up all the

reference objects.

25CSE 331 Spring 2021

src/1-lifecycle/Buggy.tsx

Bug 1 – “Read before Write”

26CSE 331 Spring 2021

• Order that React calls

methods.

• We're accessing the

reference during the

constructor

• React doesn't update

the refs (yellow box)
until after render() –

so they don’t exist

when the constructor is

running!

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

(Part of) The React Lifecycle

src/1-lifecycle/Buggy.tsx

Bug 1 – The Fix

27CSE 331 Spring 2021

Solution

Override
componentDidMount:

called when React is done

inserting all the DOM

nodes and updating refs.

In componentDidMount,

we know it's safe to use

the ref (the “read”), since

it’s guaranteed to happen

after the updating the refs

(the “write”) has finished.

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

(Part of) The React Lifecycle

src/1-lifecycle/Fixed.tsx

Bug 1 – The Fix

28CSE 331 Spring 2021

• Move the updateCanvasImage call into componentDidMount

– Still called during the component "mounting” phase – so we're

able to set up the "first look" of the canvas like we wanted.

– Happens after React sets up our refs, so we know we'll have

a valid Canvas object to work with.

• Common idea in React:

– Set something up (like the <canvas> tag) and give it to React
(by returning from render)

– Some time later, React will do its job.

– React makes a callback (like componentDidMount) to let us

know that it's done and we can use whatever we set up (like

accessing the Canvas through its ref).

src/1-lifecycle/Fixed.tsx

Bug 2 – “React Doesn’t Know”

Expected Functionality:

• When the button is clicked, the message on the page changes to

"I've been clicked!"

Current Functionality:

• The message on the page never changes.

• We know that the button event is working because the
console.log() inside the listener is being run, so the bug must

be somewhere else.

29CSE 331 Spring 2021

src/2-state/Buggy.tsx

Bug 2 – The Problem

• The this.clicked variable is being updated correctly

– You can print it out to double check, if you'd like.

• The only place we can modify what text is being put in the <p> is

during the render() method – we need to return a different <p>

element to change what's on the page.

– But React doesn't know it's supposed to call render again!

– More accurately: React doesn't know that the contents of the
this.clicked variable matters for render.

30CSE 331 Spring 2021

src/2-state/Buggy.tsx

Bug 2 – The Solution?

• React has a special place for variables that affect how a component
renders: this.state.

– Store an object ({...}) inside this.state, put whatever

properties we want in that object to track the data we need.

– Instead of this.clicked, we write this.state.clicked

• "clicked" isn't a special name here – just a variable name. Could

easily call it "this.state.pizza"

• "state" is a special name: part of the React convention, React

code expects that you store your state variables in this.state

• Not quite a fix yet, but a step in the right direction.

31CSE 331 Spring 2021

src/2-state/Buggy2.tsx

Bug 2 – The New Problem

• We're now storing our data in the right place, but we still aren't

telling React when we change it.

– React requires that you notify it when you want to change the

data, instead of changing it yourself.

– This is why we get a TypeScript compiler error when we try to

change it manually.

• To request a state change, call this.setState and pass it an

object representing the changes you want to make.

– You should never directly modify the contents of this.state

(except for constructor initialization). (Impossible with TS).

• Since you use this.setState (which is React code) to update

the state, React knows that you’ll need things to be updated based

on what changed. (So, React will re-do the render).

32CSE 331 Spring 2021

src/2-state/Buggy2.tsx

Bug 2 – The Fix

33CSE 331 Spring 2021

Solution
By calling setState to

update our state, we

trigger a "component

update cycle". During an

update, React will change

the state and then re-call
render(). In render(),

we can return the new text

to be displayed on the

page.

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

(Part of) The React Lifecycle

src/2-state/Fixed.tsx

Bug 3 – “Read before Write (is done)”

Expected Functionality:

• When a button is clicked, a square of that color appears in the

canvas.

• The current color is displayed in the text above the buttons.

Current Functionality:

• The text above the buttons seems to be working correctly.

• The canvas is lagging behind one click – displays the color from

two clicks ago instead of the most recent click.

34CSE 331 Spring 2021

src/3-desync/Buggy.tsx

Bug 3 – The Problem

• Remember that, in React, setState is a request for a future change

to state. When setState returns, the state has not yet been

updated.

– React delays state changes for performance reasons.

– Means we need to be careful about reading state: when do we

know that it's guaranteed to be up-to-date?

• The problem is that we're trying to access the state immediately

after calling setState – React hasn't gotten around to updating the

state yet, so we're seeing the old value.

– This is why the canvas is "lagging behind" by one: when we

draw the canvas, we're seeing the value of state from the

previous button press.

35CSE 331 Spring 2021

src/3-desync/Buggy.tsx

Bug 3 – What’s Actually Happening

36CSE 331 Spring 2021

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

(Part of) The React Lifecycle

src/3-desync/Fixed.tsx

this.state gets

changed later (by React)

The <p> gets updated

here, which is why it sees

the correct state (state is

guaranteed to be updated

before render is called)

setState returns,

our code keeps going

Our code calls
this.drawSquare,

which sees the old value
still in this.state

Bug 3 – The Fix

37CSE 331 Spring 2021

Image: http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

(Part of) The React Lifecycle

src/3-desync/Fixed.tsx

this.state gets

changed later (by React)

<p> gets updated here, so

it sees the correct state

Solution
Should call drawSquare,

here, since it is

guaranteed to happen
after the this.state

value has been updated.

setState returns,

our code keeps going

