CSE 331
 Software Design \& Implementation

Spring 2021
Section 1 - Code Reasoning

Administrivia

- HW1 due next Monday.
- Any questions before we dive in?
- What are the most interesting/confusing/puzzling things so far in the course?

Agenda

- Introductions?
- Review logical reasoning about code with Hoare Logic
- Practice both forward and backward modes
- Just assignment, conditional ("if-then-else"), and sequence
- Logical rules from yesterday's lecture/notes
- Review logical strength of assertions (weaker vs. stronger)
- Practice determining stronger/weaker assertions

Why reason about code?

- Prove that code is correct
- Understand why code is correct
- Diagnose why/how code is not correct
- Specify code behavior

Logical reasoning about code

- Determine facts that hold of program state between statements
- "Fact" ~ assertion (logical formula over program state, informally "value(s) of some/all program variables)
- Driven by assumption (precondition) or goal (postconditon)
- Forward reasoning
- What facts follow from initial assumptions?
- Go from precondition to postcondition
- Backward reasoning
- What facts need to be true to reach a goal?
- Go from postcondition to precondition

Hoare Logic: Validity by Reasoning

- Checking validity of $\{\{P\}\}$ s $\{\{Q\}\}$
- Valid iff, starting from any state satisfying P, executing S results in a state satisfying Q
- Forward reasoning:
- Reason from P to strongest postcondition $\{\{P\}\} S\{\{R\}\}$
- Check that R implies Q (i.e., Q is weaker)
- Backward reasoning:
- Reason from Q to get weakest precondition $\{\{R\}\} S\{\{Q\}\}$
- Check that P implies R (i.e., P is stronger)

Implication (=>)

- Logic formulas with and (\&, \&\&, or $\wedge)$, or (|, ||, or V) and not (! or \neg) have the same meaning they do in programs
- Implication might be a bit new, but the basic idea is pretty simple. Implication $p=>q$ is true as long as q is always true whenever p is

Assignment Statements

- Reasoning about $\mathbf{x}=\mathrm{y}$;
- Forward reasoning:
- add " $x=y$ " as a new fact
- (also rewrite any existing references to "x" to use new value)
- Backward reasoning:
- replace all instances of " x " in the postcondition with " y "

Conditionals, more closely

Forward reasoning
$\{\{P\}\}$
if (b)
$\{\{P \wedge \mathrm{~b}\}\}$
S_{1}
$\left\{\left\{Q_{1}\right\}\right\}$
else
$\{\{P \wedge!\mathrm{b}\}\}$
S_{2}
$\left\{\left\{Q_{2}\right\}\right\}$
$\left\{\left\{Q_{1} \vee Q_{2}\right\}\right\}$

Backward reasoning

Weaker vs. stronger

Formal definition:

- If $P \Rightarrow Q$, then
- Q is weaker than P
- P is stronger than Q

Intuitive definition:

- "Weak" means unrestrictive; a weaker assertion has a larger set of possible program states (e.g., $\mathbf{x} \quad!=0$)
- "Strong" means restrictive; a stronger assertion has a smaller set of possible program states (e.g., $\mathbf{x}=1$ or $\mathbf{x}>0$ are both stronger than $\mathbf{x} \quad!=0$).

Worksheet

- Take ~10 minutes to get where you can
- Find a partner and work with them
- Let me know if you feel stuck
- We'll walk through some solutions afterwards

Worksheet - problem 2

```
\{\{ true \}\}
if ( \(x>0\) ) \{
    \(\{\{x>0\}\}\)
    y = 2*x;
    \(\{\{\mathrm{x}>0 \wedge \mathrm{y}=2 \mathrm{x}\}\}\)
\} else \{
    \{\{ \(\mathrm{x}<=0\) \}\}
    \(y=-2 * x ;\)
    \(\{\{\mathrm{x}<=0 \wedge \mathrm{y}=-2 \mathrm{x}\}\}\)
\}
\(\{\{(x>0 \wedge y=2 x) \vee(x<=0 \wedge y=-2 x)\}\}\)
\(\Rightarrow\{\{y=2|x|\}\}\)
```


Worksheet - problem 4

```
{{ y > 15 v (y<= 5 ^ y + z > 17) }}
if (y > 5) {
    {{ y > 15 }}
    x = y + 2
    {{ x > 17 }}
} else {
    {{ y + z > 17 }}
    x = y + z;
    {{ x > 17 }}
}
{{ x > 17 }}
```


Worksheet - problem 6 (forward)

```
{{ true }}
if (x < y) {
    {{ true ^ x < y }}
    m = x;
    {{ x < y ^m= x }}
} else {
    {{ true ^ x >= y }}
    m = y;
    {{ x >= y ^ m = y }}
}
{{ (x < y ^ m = x) \vee (x >= y ^ m = y) }}
=> {{ m = min(x, y) }}
```


Worksheet - problem 6 (backward)

```
{{ true }} }
{{ (x <= y ^ x < y) \vee (y <= x ^ x >= y) }}
if (x < y) {
    {{ x = min(x, y) }} \Leftrightarrow{{x<= y }}
    m = x;
    {{m = min(x, y) }}
} else {
    {{ y = min(x, y) }} \Leftrightarrow{{ x >= y }}
    m = y;
    {{m = min(x, y) }}
}
{{ m = min(x, y) }}
```


Worksheet - problem 7

\{\{ y > 23 \}\}
$\{\{y>=23\}\}$
$\{\{y=23\}\}$
$\{\{y>=23\}\}$
$\{\{\mathrm{y}<0.23$ \}\}
$\{\{x=y$ * $z\}\}$
\{\{ is_prime (y) \}\}
$\{\{y=x / z\}\}$
$\{\{y<0.00023$ \}\}
\{\{ is_odd(y) \}\}

Worksheet - problem 7

$$
\begin{array}{lr}
\{\{y>23\}\} & \text { is stronger than } \\
\{\{y=23\}\} & \{\{y>=23\}\} \\
\{\{y<0.23\}\} & \{\{y<0.00023\}\} \\
\{\{x=y * z\}\} & \{\{y=x / z\}\} \\
\{\{\text { is_prime }(y)\}\} & \{\{\text { is_odd }(y)\}\}
\end{array}
$$

Worksheet - problem 7

$$
\begin{array}{lcc}
\{\{y>23\}\} & \text { is stronger than } & \{\{y>=23\}\} \\
\{\{y=23\}\} & \text { is stronger than } & \{\{y>=23\}\} \\
\{\{y<0.23\}\} & & \{\{y<0.00023\}\} \\
\{\{\mathrm{x}=\mathrm{y} * \mathrm{y}\}\} & \{\{\mathrm{y}=\mathrm{x} / \mathrm{z}\}\} \\
\{\{\text { is_prime }(\mathrm{y})\}\} & \{\{\text { is_odd }(\mathrm{y})\}\}
\end{array}
$$

Worksheet - problem 7

$$
\begin{array}{lcc}
\{\{y>23\}\} & \text { is stronger than } & \{\{y>=23\}\} \\
\{\{y=23\}\} & \text { is stronger than } & \{\{y>=23\}\} \\
\{\{y<0.23\}\} & \text { is weaker than } & \{\{y<0.00023\}\} \\
\{\{\mathrm{x}=\mathrm{y} * \mathrm{y}\}\} & & \{\{\mathrm{y}=\mathrm{x} / \mathrm{z}\}\} \\
\{\{\text { is_prime }(\mathrm{y})\}\} & \{\{\text { is_odd }(\mathrm{y})\}\}
\end{array}
$$

Worksheet - problem 7

$$
\begin{array}{lcc}
\{\{y>23\}\} & \text { is stronger than } & \{\{y>=23\}\} \\
\{\{y=23\}\} & \text { is stronger than } & \{\{y>=23\}\} \\
\{\{y<0.23\}\} & \text { is weaker than } & \{\{y<0.00023\}\} \\
\{\{x=y * z\}\} & \text { is incomparable with } & \{\{y=x / z\}\} \\
\{\{\text { is_prime }(y)\}\} & \{\{\text { is_odd }(y)\}\}
\end{array}
$$

Worksheet - problem 7

$$
\begin{array}{lll}
\{\{y>23\}\} & \text { is stronger than } & \{\{y>=23\} \\
\{\{y=23\}\} & \text { is stronger than } & \{\{y>=23\} \\
\{\{y<0.23\}\} & \text { is weaker than } & \{\{y<0.00023\}\} \\
\{\{x=y * z\}\} & \text { is incomparable with } & \{\{y=x / z\}\} \\
\{\{\text { is_prime }(y)\}\} & \text { is incomparable with } & \{\{\text { is_odd }(y)\}\}
\end{array}
$$

Questions?

- What is the most surprising thing about this?
- What is the most confusing thing?
- What will need a bit more thinking to digest?

