
Real-world 
Software Patterns 

CSE331 - Autumn 2020
Ardi Madadi

Based on slides by: Jared Moore 



In this class, we teach you to recognize a pattern 
and apply its solution.
We ask you:
▶ To go from finding a bug to using a debugger,
▶ To go from implementing a method to 
reasoning about that method by writing tests for 
it,
▶ Or to go from repeating yourself in the 
methods of various objects to defining 
inheritance.

Software patterns



There are many answers. Some include: 
▶ because we say so, 
▶ because it often increases computational 
efficiency, 
▶ and because it often increases efficiency more 
generally. 
But…. 

Why do this? 



▶ there’s a limit to the number of helpful tests 
to write, 
▶ inheritance doesn’t always prevent repeated 
code, 
▶ and what’s efficient for one isn’t always 
efficient for all. So, today we’ll discuss the ‘why’ 
of software engineering.

Why do this? 



You have learned to be “ethical” software 
engineers. 

▶ (Where “ethics” is doing good according to the 
practices and culture of software engineering.) 

But what about when these practices of software 
engineering run into the real world?

A software ethic 



You have learned to be “ethical” software 
engineers. 

▶ (Where “ethics” is doing good according to the 
practices and culture of software engineering.) 

But what about when these practices of software 
engineering run into the real world?

A software ethic 



Real-World Patterns



Consider, for example: 

▶ APIs which compromises individual privacy, 
▶ software which enforces a gender binary, 
▶ and user interfaces unusable by people with 
different abilities.

Looking for real-world patterns 



What if we could recognize design patterns not 
just in software but also in how software 
interacts with the real world?

Looking for real-world patterns 



What about for: 

▶ accessibility (e.g. sightedness, handedness, 
mobility, deafness, and many more), 
▶ diversity (e.g. race, gender, sexuality, age, 
learning style, and many more), 
▶ or privacy (e.g. of individual data, of trends, 
from certain groups, and many other facets)? 

(We might look for many other patterns besides.)

Looking for real-world patterns 



Let’s consider the following API: 

Applying those patterns



Pause the video and think of the following 
questions: 

What if…..

Applying those patterns



▶lookupAddress saves all of the addresses it 
receives? 
▶ lookupAddress stores timestamps and 
meta-data on queries? 
▶ lookupAddress sends all of that information to 
a web-server?
 ▶ a user of lookupAddress is recognizable based 
on their misspellings (e.g. always writes 
“Pensylvania”)?
 ▶ or lookupAddress is used for sensitive 
addresses (e.g. domestic violence survivors, 
government dissidents)?

Applying those patterns



When we pay attention to privacy we sometimes 
find issues with our good software engineering 
practices like abstraction.

Conclusion



Inheritance and diversity



Let’s consider the following implementations of 
User.

Inheritance and diversity 



Let’s pause the video and think of the following:

▶What might be the motivation to use a 
software pattern in this way? 
▶ What might an understanding of gender say 
about such a use of inheritance?

Inheritance and diversity 



Does this ‘fix’ the problem?

Inheritance and diversity 



What if: 

▶ another part of the application requires a user 
to be either a Man or a Woman? (e.g. a sorting 
function, a key in a database) 
▶ a user considers their gender mutable? 
▶ gender identity is inferred by the program as 
opposed to provided to it? 
▶ we allow gender identities besides Man, 
Woman, or none?

Inheritance and diversity 



▶ When we pay attention to diversity (here, 
gender) we sometimes find issues with our good 
software engineering practices like inheritance. 

(For more check out [this poster] from an Allen 
School alum!)

Conclusion

https://courses.cs.washington.edu/courses/cse331/20sp/lectures/lec22-ethics.pdf


Campus Paths and accessibility



Now let’s think a little more open ended. Recall 
the Campus Paths assignment. What might we 
say about Campus Paths regarding the pattern of 
(in)accessibility?

Campus Paths and accessibility



Let’s Pause the video and think of the following 
questions:

▶Does Campus Paths have assumptions that 
favor some people over others? 
▶ (If you’re stuck: when might someone not 
prefer the shortest path? Why?) 
▶ What are those assumptions? 
▶ Did you notice these assumptions as you 
completed your assignment? 
▶ What could, should, or would you do about 
these assumptions? What should we do?

Campus Paths and accessibility



When we pay attention to accessibility we 
sometimes find issues with our good software 
engineering practices like a generic user.

Conclusion



Evaluating the limit of abstraction



Computer science is a function of abstraction: 

▶ “give me your parameters and returns,” we 
say “not your implementation details”; 
▶ “let’s just assume that memory is infinite”; 
▶ “how about we treat all users as the same for 
now.”

Evaluating the limit of abstraction



Evaluating the limitations of abstraction is hard

▶ (But such evaluation is the essence of 
computer science!) 

So what do we do—simplify the world so we can 
find a closed-form optimum for it? Do we ignore 
the difficulties posed by abstraction? No, we 
critically design, test, and revise our abstractions 
and our design patterns to form new patterns 
and new abstractions.

Evaluating the limit of abstraction



“I Object!”



“Okay, I get it,” you say, “but you haven’t told us 
what to do about these ‘real-world’ patterns; they 
aren’t fixable.”

“I Object!”



▶ Don’t we deal with constraints all the time? 
▶ (e.g. writing a good spec) 

▶ Even when there are no ‘fixes’ often 
acknowledging shortcomings is enough. 
▶ (e.g. error messages)

“I Object!”



“Okay, I get it,” you say, “but recognizing these 
‘real-world’ patterns isn’t my job; I’m just a 
software engineer.” 

“I Object!”



▶ Often these patterns occur because of 
software engineering and, as software engineers, 
we understand the software best. 
▶ So, whose ‘job’ is it to recognize these patterns 
but our own?

“I Object!”



Learning to see, then learning to fix



Ask yourself: 
▶ Can you recognize not just software patterns 
but also patterns about the use of software in 
the world? 
▶ Can you communicate your technical choices 
to decision-makers? (When it is someone else’s 
‘job’ to decide.) 
▶ Can users, peers, colleagues, non-users, etc. 
communicate their needs to you? 

Learning to see, then learning to fix



If not, you can learn. (After all, you did learn how 
to recognize software patterns.)

Learning to see, then learning to fix



Thank You!


