
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2021

HTTP Servers



HTTP SERVERS



Server Frameworks

• How do we write a modular HTTP server?
– need to split up the code into multiple classes

• Usual technique is to route requests using the path
– use path to choose class that handles the request
– used in Java, C++, Python, JavaScript, …
– pass data to class using:

• query string
• POST body
• (part of) path

CSE 331 Spring 2021 3



Spark Java

• Simple library for writing HTTP servers in Java
– not to be confused with “Apache Spark” — very different!

• Give Spark paths and corresponding classes
– latter are called “routes” in this library
– server will read the request path and invoke appropriate class

• info about the request passed in request object
• response can be written to response object or returned

• Library handles the event loop

CSE 331 Spring 2021 4



Spark Java

Spark.get(“/path”, new MyRoute());

• GET request with this path are sent to this object

• Second argument must implement Route interface
– single required method handle(Request, Response)
– that means it can also be implemented with a Lambda

Spark.get(“/ready”, (request, response) -> {
return “Nah, I’m busy”;

});

CSE 331 Spring 2021 5



Example: Hello Server

HelloServer.java

6CSE 331 Spring 2021



Example: To-Do Server

• Stores a To-Do list

• Clients can retrieve the current list

• Clients can update the list
– check off an item
– add a new item

CSE 331 Spring 2021 7



Example: To-Do Server

ToDoServer.java

8CSE 331 Spring 2021



Spark Java

• Many more features
– simple things are simple
– complex things are possible

• Simple version is single threaded
– makes life much easier
– medium scale would use threads
– high scale would not use them (see lecture 16)

• Documentation at http://sparkjava.com/documentation

CSE 331 Spring 2021 9

http://sparkjava.com/documentation


HTTP CLIENTS



Client / Server communication

• Original JavaScript API: XmlHttpRequest

• Create object call open to configure
– pass in GET / POST, path, and async = true

• Listen for response event
– onload invoked when done

• responseText contains the response body string

• Call send to start the request
– for a POST, pass in the request body
– for GET, pass null

CSE 331 Spring 2021 11



Example: To-Do Client

TodoApp.tsx

12CSE 331 Spring 2021



Client / Server communication

• Original JavaScript API: XmlHttpRequest

• Newer APIs discussed in section
– fetch API returns a Promise object

• widely used in JS programming these days
• works well for sequential reqs: start task 1, wait for result, 

start task 2, wait for result, start task 3, wait for result
• works well for parallel reqs: start tasks 1–3, wait for all

– async / await JS keywords automatically create promises
• write sequential code in one block
• compiler will split into separate pieces

CSE 331 Spring 2021 13



Client / Server communication

• By default, client can only talk to the server from 
which the code was loaded
– same machine and same port
– “same origin” policy

• For development, we often want to split do this
– npm runs a separate server that recompiles client code
– can allow cross-domain requests in the Java server

• example code does this
– can set up recompiling server to forward these requests
– (annoying but we’re stuck with it)

CSE 331 Spring 2021 14



Debugging

• Network tab in Chrome shows every request
– full details of request

• path, headers, etc.
– full details of response

• status code, response body, etc.
– timing information

CSE 331 Spring 2021 15


