1. Recall the pseudocode for BFS, and consider the following graph below.

 push start node onto a queue
 mark start node as visited
 while queue is not empty:
 pop node N off queue
 if N is goal:
 return true
 else:
 for each node O that is child of N:
 if O is not marked visited:
 mark node O as visited
 push O onto queue
 return false

Find the shortest path starting from B going to E. Record each update (push, pop) to the queue or any returns (true, false) in the table below.

<table>
<thead>
<tr>
<th>Action</th>
<th>Queue Contents</th>
<th>Visited Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>