1. Recall the pseudocode for BFS, and consider the following graph below.
```
push start node onto a queue
mark start node as visited
while queue is not empty:
    pop node N off queue
    if N is goal:
        return true
    else:
    for each node O that is child of N:
        if O is not marked visited:
                mark node O as visited
                push O onto queue
return false
```


Find the shortest path starting from B going to \mathbf{E}. Record each update (push, pop) to the queue or any returns (true, false) in the table below.

Action	Queue Contents	Visited Nodes
push B	$[\mathrm{B}]$	B
pop B	[]	B
push A	$[\mathrm{A}]$	B, A
push D	$[\mathrm{D}, \mathrm{A}]$	$\mathrm{B}, \mathrm{A}, \mathrm{D}$
pop A	$[\mathrm{D}]$	$\mathrm{B}, \mathrm{A}, \mathrm{D}$
push C	$[\mathrm{C}, \mathrm{D}]$	$\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}$
pop D	$[\mathrm{C}]$	$\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}$
push E	$[\mathrm{E}, \mathrm{C}]$	$\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{E}$
pop C	$[\mathrm{E}]$	$\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{E}$
pop E	[]	$\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{E}$
return true	[]	$\mathrm{B}, \mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{E}$

