
CSE 331

Software Design & Implementation

Autumn 2021

Section 5 – HW5, Rep Invariants, Equals + Hashcode

UW CSE 331 Autumn 2021 1

Administrivia

• HW5 Part 1 due tonight (at 11PM)!

– hw5-part1-final tag

– Do not include any ADT implementation in this commit/tag

• HW5 part 2 (ADT implementation) due next Thursday.

– Reminder (1): No generics for now!

– Reminder (2): Be sure to add/commit/push new files in git

– Reminder (3): Remember to commit and push your code often,

even if your assignment isn’t finished yet!

UW CSE 331 Autumn 2021 2

Agenda

• HW5

• Rep Invariant and AF Practice

• Managing an expensive checkRep

• equals and hashCode

• Brief mid-point summary/review

UW CSE 331 Autumn 2021 3

Refresher: Format of script tests

Each script test expressed as text-based script foo.test

– One command per line, of the form: Command arg1 arg2 …

– Script’s output compared against foo.expected

– Precise details specified in the homework

– Match format exactly, including whitespace and output order!

UW CSE 331 Autumn 2021 4

Command (in foo.test) Output (in foo.expected)

CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label from parent to child in graph

ListNodes graph graph contains: labelnode …

ListChildren graph parent the children of parent in graph are: child(labeledge)…

This is comment text … # This is comment text …

Refresher: example.test

Create a graph

CreateGraph graph1

Add a pair of nodes

AddNode graph1 n1

AddNode graph1 n2

Add an edge

AddEdge graph1 n1 n2 e1

Print all nodes in the graph

ListNodes graph1

Print all child nodes of n1 with outgoing edge
ListChildren graph1 n1

UW CSE 331 Autumn 2021 5

n1 n2
e1

Refresher: example.expected

Create a graph

created graph graph1

Add a pair of nodes

added node n1 to graph1

added node n2 to graph1

Add an edge

added edge e1 from n1 to n2 in graph1

Print all nodes in the graph

graph1 contains: n1 n2

Print all child nodes of n1 with outgoing edge
the children of n1 in graph1 are: n2(e1)

UW CSE 331 Autumn 2021 6

n1 n2
e1

Graph Test Driver

• GraphTestDriver calls a method to “do” each verb

– CreateGraph, AddNode, AddEdge …

– One method stub per script command for you to fill with calls to

your graph code

• Note: Completed test driver should sort lists before printing for

ListNodes and ListChildren

– Just to ensure predictable, deterministic output

– Your graph implementation itself should not worry about sorting

UW CSE 331 Autumn 2021 7

Graph Test Driver Output

• The Graph Test Driver is a client of our graph…

– …but not the only client.

– Your graph should not be designed to be exclusively used

for the test driver.

• ListChildren in the test driver should print out: “the children

of parent in graph are: child(labeledge)…”

• This does not mean that you should have a method on your

graph called ListChildren that returns this String

– Because that would make it very hard for other clients to use

that don’t want this exact format

UW CSE 331 Autumn 2021 8

Sorting with the driver

• Use the test driver appropriately!

– From last slide: “Completed test driver should sort lists

before printing.”

• Script test output for hw5 needs to be sorted so we can

mechanically check it.

• This means sorted output for tests does NOT mean sorted

internal storage in graph.

– If sorting behavior is needed, Graph ADT clients (including

the test driver) can sort those labels.

UW CSE 331 Autumn 2021 9

In other words…

The Graph ADT in general should NOT assume that

node or edge labels are sorted.

UW CSE 331 Autumn 2021 10

Script Tests vs. Junit Tests

• If you’re able to test a case with script tests, use script tests:

– i.e. any input/output covered by the script test commands

– These are Graph agnostic (if you wanted to overhaul your

Graph class, you would only need to change your test driver)

• Otherwise, use Junit tests:

– i.e. bad input, additional methods, …

– If you want to overhaul the graph class, you would need to

change all of the tests

UW CSE 331 Autumn 2021 11

Rep Invariants and AFs

• Let’s do the worksheet!

• In pairs/groups

UW CSE 331 Autumn 2021 12

Expensive checkReps

• A complicated rep. invariant can be expensive to check

– Especially iterating over internal collection(s)

– For example, examining every edge in a graph

• A slow checkRep could cause our grading scripts to time-out

– Can be really useful during testing/deugging, but

– Need to disable the really slow checks before submitting

• We have a tension between two goals:

– Thorough, possibly slow checking for development

– Essential, necessarily fast checking for production/grading

• What to do?

UW CSE 331 Autumn 2021 13

Use a debug flag to tune checkRep

• Repeatedly (un)commenting sections of code is a poor solution

• Instead, use a class-level constant as a toggle

– Ex.: private static final boolean DEBUG = …;

• false for only the fast, essential checks

• true for all the slow, thorough checks

– Real-world code often has several such “debug levels”

UW CSE 331 Autumn 2021 14

private void checkRep() {

assert fast_checks();

if (DEBUG)

assert slow_checks();

}

The equals method (review)

• Specification mandates several properties:

– Reflexive: x.equals(x) is true

– Symmetric: x.equals(y) y.equals(x)

– Transitive: x.equals(y) y.equals(z) x.equals(z)

– Consistent: x.equals(y) shouldn’t change, unless perhaps x or y did

– Null uniqueness: x.equals(null) is false

• Several notions of equality:

– Referential: literally the same object in memory

– Behavioral: no sequence of operations could tell apart

– Observational: no sequence of observer operations could tell apart

UW CSE 331 Autumn 2021 15

The hashCode method (review)

• Specification mandates several properties:

– Self-consistent: x.hashCode() shouldn’t change, unless x did

– Equality-consistent: x.equals(y) x.hashCode() == y.hashCode()

• Equal objects must have the same hash code.

– Implementations of equals and hashCode work together for this

– If you override equals, you must override hashCode as well

UW CSE 331 Autumn 2021 16

Overriding equals and hashCode

• A subclass method overrides a superclass method, when…

– They have the exact same name

– They have the exact same argument types

• An overriding method should satisfy the overridden method’s spec.

• Always use @override tag when overriding equals and

hashCode (or any other overridden method)

• Note: Method overloading is not the same as overriding

– Same name but distinguished by different argument types

• Keep these details in mind if you override equals and hashCode.

UW CSE 331 Autumn 2021 17

Your turn!

Spend a few minutes on the worksheet problems, then

we’ll go over answers.

UW CSE 331 Autumn 2021 18

Topics covered so far

• Reasoning about code:

Hoare logic, forward/backward reasoning, loop invariants, …

• Specification:

JavaDoc, stronger v. weaker, satisfaction, substitutability, …

• Data abstraction:

ADT spec./impl., abstraction functions, rep. invariants, …

– Including checkRep as covered in lecture/section

• Testing:

unit v. system, black-box v. clear-box, spec. v. impl., …

• Modularity:

(de)composition, cohesion, coupling, open-closed principle, …

• Object identity:
equivalence relation, equals, hashCode, …

UW CSE 331 Autumn 2021 25

