
CSE 331 21au Representation Exposure Worksheet Sample Solution

Consider the following code that contains two ADTs: a 2-D Point class and a PointSet class
which is essentially identical to the CharSet class used as an example in lecture. There is also
a Main class with a main method that creates instances of these classes and calls some of
their methods. Answer questions about this code on the following page.

/** 2-d (x,y) point on the plane */

class Point {

 private int x, y;

 public Point(int x, int y) {

 this.x = x; this.y = y;

 }}

/** Set of 2-D Points */

class PointSet {

 // RI: elts has no nulls and no duplicates

 private List<Point> elts;

 public PointSet() { elts = new ArrayList<Point>(); }

 /** add a point to this */

 public void add(Point p) {

 // ... check for duplicates omitted

 elts.add(p);

 }

 // Three methods that return a list of the set elements

 public List<Point> getElts1() { return elts; }

 public List<Point> getElts2() { return new ArrayList<Point>(elts); }

 public List<Point> getElts3() {

 return Collections.unmodifiableList(elts);

 }

}

class Main {

 public static void main(String[] args) {

 PointSet ps = new PointSet();

 ps.add(new Point(1,2));

 ps.add(new Point(17,42));

 List<Point> e1 = ps.getElts1();

 List<Point> e2 = ps.getElts2();

 List<Point> e3 = ps.getElts3();

 // draw a diagram of memory when execution reaches here

 }

}

CSE 331 21au Representation Exposure Worksheet Sample Solution

1. (CSE 143 review) Draw a diagram of memory showing all the variables and objects that exist
at the end of method main when it is executed. Be sure you clearly show the distinction
between local variables in main and Java objects referenced by those variables and by other

objects. The results of the first two assignments, which create a PointSet and add a Point
to it, are given below to help you get started. Add to this diagram to show the effect of the rest
of the code.

2. Do any of the three implementations of method getElts (getElts1, getElts2,
getElts3) have potential representation exposure problems? If so, explain which method(s)

have the problem and why. (Briefly)

getElts1 has rep exposure as a client can directly modify the list. The other two do not (getElts2
copies the list, getElts3 wraps it in an unmodifiable list).

3. Now, let’s say that the Point class is designed as follows:

/** 2-d (x,y) mutable point on the plane */

class Point {

 private int x, y;

 public Point(int x, int y) {

 this.x = x; this.y = y;

 }

 public void setX(int x) { this.x = x; }

 public void setY(int y) { this.y = y; }

}

Which of the three implementations of getElts would have potential representation
exposure problems? Why?
All three do. If Point is mutable, users can change the values regardless of how we return our
list. This could violate our invariant (for example the user could make duplicates in the set). To

ps

e1

e2

e3

main

…

x 1
y 2

x 17
y 42

elts

…

CSE 331 21au Representation Exposure Worksheet Sample Solution

remedy this, we would have to do a deep copy (copy each of the points themselves when
adding to the set and returning from our getElts methods).

