CSE 331 Software Design & Implementation

Autumn 2021 Section 1 – Code Reasoning

1

- HW0 due tomorrow (Friday 10/1 by 5PM).
- Any questions before we dive in?
 - What are the most interesting/confusing/puzzling things so far in the course?

- Introductions?
- Website tour
- Review and practice logical reasoning about code with Hoare Logic
- Review and practice logical strength of assertions (weaker vs. stronger)
- Onwards to forward reasoning

Introductions

Website Tour

Why reason about code?

- Prove that code is correct
- Understand *why* code is correct
- Diagnose why/how code is *not* correct
- Specify code behavior

From lecture:

Hoare Logic: First definitions

- **Program State:** Values of all related variables
- **Assertion:** True/False claim (proposition) about the program state at a certain point in execution
- An assertion **holds** for a program state if it is true at that point.
- **Precondition:** Assertion before the code
 - Assumptions about when the code is used
- **Postcondition:** Assertion after the code
 - What we want the result of the code to be

From lecture:

Hoare Logic

- Hoare Triple: Two assertions surrounding a piece of code
 - 0 {{ P }} S {{ Q }}
 - P is the precondition, S is the code, Q is the postcondition
 - P,Q are specifications
- A Hoare triple {{ P }} S {{ Q }} is valid if in any state that P holds,
 Q holds after running the code S.
 - If P is true, after running S we have that Q is true.
 - Otherwise the triple is **invalid**.

Let's practice! (Q1, Q2)

A Note on Implication (=>)

 Implication might be a bit new, but the basic idea is pretty simple. Implication p=>q is true as long as q is always true whenever p is

р	q	p => q
Т	т	т
Т	F	F
F	Т	Т
F	F	Т

From lecture:

Weaker / Stronger Assertions

- If P1 implies P2 (written P1 \Rightarrow P2) then we say:
 - P1 is **stronger** than P2
 - P2 is **weaker** than P1
- In other words:
 - P1 is "more difficult" to satisfy than P2
 - P1 puts more constraints on program states
 - P1 gives us more information about the program state

Let's practice! (Q3)

Forward Reasoning

- "What facts follow from initial assumptions about the code?"
- Precondition is **given**
- Fill in the **strongest** postcondition
 - For an assignment statement x = y
 - Add fact "x = y" to what is known
 - important subtleties here (more later...)
 - Later: if statements and loops

From lecture:

Example of Forward Reasoning

 $\{\{ w > 0 \}\}$ x = 17; $\{\{ w > 0 \land x = 17 \}\}$ y = 42; $\{\{ w > 0 \land x = 17 \land y = 42 \}\}$ z = w + x + y; $\{\{ w > 0 \land x = 17 \land y = 42 \land z = w + 59 \}\}$

Suppose we know that $i \ge 2$ at the start...

- {{ i >= 2 }} x = 2 * i;
- y = x;
- z = (x + y) / 2;

Suppose we know that $i \ge 2$ at the start, what do we know about z at the end?

{{ i >= 2 }}
x = 2 * i;
{{ x = 2 * i ^ i >= 2 }}
y = x;

z = (x + y) / 2;

Suppose we know that $i \ge 2$ at the start, what do we know about z at the end?

{{ i >= 2 }}
x = 2 * i;
{{ x = 2 * i ^ i >= 2 }}
y = x;
{{ y = x ^ x = 2 * i ^ i >= 2 }}
z = (x + y) / 2;

Suppose we know that $i \ge 2$ at the start, what do we know about z at the end?

```
{{ i >= 2 }}
x = 2 * i;
{{ x = 2 * i ^ i >= 2 }}
y = x;
{{ y = x ^ x = 2 * i ^ i >= 2 }}
z = (x + y) / 2;
{{ z = (x + y) / 2;
{{ z = (x + y) / 2;
}}
```

Suppose we know that $i \ge 2$ at the start, what do we know about z at the end?

```
\{\{ i \ge 2 \}\}
x = 2 * i;
\{\{ x = 2 * i \land i \ge 2 \}\}
y = x;
\{\{ y = x \land x = 2 * i \land i \ge 2 \}\}
z = (x + y) / 2;
\{\{ z = (x + y) / 2; \\ \{\{ z = (x + y) / 2 \land y = x \land x = 2 * i \land i \ge 2 \}\}
\Rightarrow \{\{ z = (2 * i + 2 * i) / 2 \land i \ge 2 \}\}
```

Suppose we know that $i \ge 2$ at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x = 2 * i;
\{\{ x = 2 * i \land i >= 2 \}\}
\mathbf{v} = \mathbf{x};
\{\{y = x \land x = 2 * i \land i >= 2 \}\}
z = (x + y) / 2;
\{\{z = (x + y) / 2 \land y = x \land x = 2 * i \land i >= 2\}
} }
\Rightarrow \{ \{ z = (2 * i + 2 * i) / 2 \land i >= 2 \} \}
\Rightarrow \{\{z = 2 * i \land i >= 2\}\}
```

Suppose we know that $i \ge 2$ at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x = 2 * i;
\{\{ x = 2 * i \land i >= 2 \}\}
\mathbf{v} = \mathbf{x};
\{\{y = x \land x = 2 * i \land i >= 2 \}\}
z = (x + y) / 2;
\{\{z = (x + y) / 2 \land y = x \land x = 2 * i \land i >= 2\}
} }
\Rightarrow \{ \{ z = (2 * i + 2 * i) / 2 \land i >= 2 \} \}
\Rightarrow \{\{z = 2 * i \land i >= 2\}\}
\Rightarrow { { z >= 4 } }
                              CSE 331 Autumn 2021
```

22

Let's practice! (Q5,Q6)

Questions?

- What is the most surprising thing about this?
- What is the most confusing thing?
- What will need a bit more thinking to digest?