CSE 331
 Software Design \& Implementation

Autumn 2021
Section 1 - Code Reasoning

Administrivia

- HWO due tomorrow (Friday 10/1 by 5PM).
- Any questions before we dive in?
- What are the most interesting/confusing/puzzling things so far in the course?

Agenda

- Introductions?
- Website tour
- Review and practice logical reasoning about code with Hoare Logic
- Review and practice logical strength of assertions (weaker vs. stronger)
- Onwards to forward reasoning

Introductions

Website Tour

Why reason about code?

- Prove that code is correct
- Understand why code is correct
- Diagnose why/how code is not correct
- Specify code behavior

From lecture:

Hoare Logic: First definitions

- Program State: Values of all related variables
- Assertion: True/False claim (proposition) about the program state at a certain point in execution
- An assertion holds for a program state if it is true at that point.
- Precondition: Assertion before the code
- Assumptions about when the code is used
- Postcondition: Assertion after the code
- What we want the result of the code to be

From lecture:

Hoare Logic

- Hoare Triple: Two assertions surrounding a piece of code - $\{\{\mathrm{P}\}\} \mathrm{S}\{\{\mathrm{Q}\}\}$
- P is the precondition, S is the code, Q is the postcondition
- P,Q are specifications
- A Hoare triple $\{\{P\}\} S\{\{Q\}\}$ is valid if in any state that P holds,
Q holds after running the code S.
- If P is true, after running S we have that Q is true.
- Otherwise the triple is invalid.

Let's practice! (Q1, Q2)

A Note on Implication (=>)

- Implication might be a bit new, but the basic idea is pretty simple. Implication $p=>q$ is true as long as q is always true whenever p is

p	\mathbf{q}	$\mathrm{p}=>\mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

From lecture:

Weaker / Stronger Assertions

- If P1 implies P2 (written P1 \Rightarrow P2) then we say:
- P1 is stronger than P2
- P2 is weaker than P1
- In other words:
- P1 is "more difficult" to satisfy than P2
- P1 puts more constraints on program states
- P1 gives us more information about the program state

Let's practice! (Q3)

Forward Reasoning

Forward Reasoning

- "What facts follow from initial assumptions about the code?"
- Precondition is given
- Fill in the strongest postcondition
- For an assignment statement $x=y$
- Add fact " $x=y$ " to what is known
- important subtleties here (more later...)
- Later: if statements and loops

From lecture:

Example of Forward Reasoning

$$
\begin{aligned}
& \{\{w>0\}\} \\
& x=17 ; \\
& \{\{w>0 \wedge x=17\}\} \\
& y=42 ; \\
& \{\{w>0 \wedge x=17 \wedge y=42\}\} \\
& z=w+x+y ; \\
& \{\{w>0 \wedge x=17 \wedge y=42 \wedge z=w+59\}\}
\end{aligned}
$$

Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start...

$$
\begin{aligned}
& \{\{i>=2\}\} \\
& x=2 * i ; \\
& y=x ; \\
& z=(x+y) / 2 ;
\end{aligned}
$$

Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start, what do we know about z at the end?

```
{{ i >= 2 }}
x = 2 * i;
{{ x = 2 * i ^ i >= 2 }}
y = x;
z = (x + y) / 2;
```


Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x = 2 * \(i\);
\{\{ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
y = x;
\{\{ y = x ^ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
\(\mathbf{z}=(\mathrm{x}+\mathrm{y}) / 2\);
```


Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x = 2 * \(i\);
\{\{ x = 2 * i \(\wedge\) i >= 2 \}\}
y = \(\mathbf{x}\);
\{\{ y = x ^ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
\(\mathbf{z}=(\mathbf{x}+\mathrm{y}) / 2 ;\)
\{f \(z=(x+y) / 2 \wedge y=x \wedge x=2\) * i \(\wedge i \gg=2\)
\} \}
```


Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x \(=2\) * i;
\{\{ \(x=2\) * i \(\wedge i>=2\}\}\)
\(\mathrm{y}=\mathrm{x}\);
\(\{\{y=x \wedge x=2 * i \wedge i>=2\}\}\)
\(\mathbf{z}=(\mathbf{x}+\mathrm{y}) / 2\);
\(\{\{z=(x+y) / 2 \wedge y=x \wedge x=2 * i \wedge i>=2\)
\} \}
\(\Rightarrow\{\{z=(2 * i+2 * i) / 2 \wedge i>=2\}\}\)
```


Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x = 2 * \(i\);
\{\{ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
y = \(\mathbf{x}\);
\{\{ y = x ^ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
\(z=(x+y) / 2 ;\)
\{\{ \(z=(x+y) / 2 \wedge y=x \wedge x=2 * i \wedge i>=2\)
\} \}
\(\Rightarrow\{\{\quad \mathrm{z}=\) (2 * i + 2 * i) / 2 ^ i >= 2 \}\}
\(\Rightarrow\{\{z=2\) * i 1 i \(>=2\}\}\)
```


Let's Try One Together (Q4)

Suppose we know that i >= 2 at the start, what do we know about z at the end?

```
\{\{ i >= 2 \}\}
x = 2 * \(i\);
\{\{ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
y = \(\mathbf{x}\);
\{\{ y = x ^ x = 2 * i \(\wedge ~ i ~>=~ 2 ~\}\} ~\)
\(z=(x+y) / 2 ;\)
\{\{ \(z=(x+y) / 2 \wedge y=x \wedge x=2 * i \wedge i>=2\)
\} \}
\(\Rightarrow\{\{\quad \mathrm{z}=\) (2 * i + 2 * i) / 2 ^ i >= 2 \}\}
\(\Rightarrow\{\{z=2\) * i \(\wedge\) i \(>=2\}\}\)
\(\Rightarrow\{\{\quad z>=4\}\}\)

\section*{Let's practice! (Q5,Q6)}

\section*{Questions?}
- What is the most surprising thing about this?
- What is the most confusing thing?
- What will need a bit more thinking to digest?```

