
 CSE 331 Autumn 2021 Lecture 4.5 worksheet 

 

 
1 

 

1. Fill in the proof of correctness for the method strToInt on the next page. It returns the int 
value corresponding to the decimal number written in the first n characters of the array s. 
 
That code references a function charToInt that takes a character in the range ‘0’, ‘1’, …, 
‘9’ to the corresponding int in the range 0, 1…, 9. It has the following implementation: 
 
    // Precondition: ‘0’ <= ch <= ‘9’ 
    int charToInt(char ch) { 
      return ch – ‘0’; 
    } 
 
Reason in the direction (forward or backward) indicated by the arrows on each line: forward 
outside the loop and backward inside the loop.  
 
In addition to filling in each blank below, you must provide additional explanation whenever 
two assertions appear right next to each other, with no code in between: in those cases, 
explain why the top statement implies the bottom one. You can skip this explanation if the 
two statements are identical or if the bottom one simply drops facts included the top one. 
 
 
 
Notes on the notation used: 

• A summation over a range like “s[a] + … + s[b]” should be interpreted as 0 if there 
are no indexes between the lower bound, a, and the upper bound, b, (i.e., if b < a). 
 

• The assertions make reference to a mathematical function “int” that takes a character 
in the range ‘0’, ‘1’, …, ‘9’ to the corresponding integer value in the range 0, 1, .., 9. 
(The Java function charToInt mentioned above implements this function.) 



 CSE 331 Autumn 2021 Lecture 4.5 worksheet 

 

 
2 

{{ Precondition: 0 < n <= s.length() }} 
int strToInt(char[] s, int n) { 
¯  int i = 0; 
   {{ Precondition and i = 0 }} 
¯  int val = 0; 
   {{ Precondition and i = 0 and val = 0 }} 
     Since i = 0, there are no indices in 10i-1 * int(s[0]) + … + 10 * int(s[i-2]) + int(s[i-1]), 
     which means that this sum is 0 = val. 
 
   {{ Inv: val = 10i-1 * int(s[0]) + … + 10 * int(s[i-2]) + int(s[i-1]) }} 
   while (i != n) { 
       Multiplying both sides by 10 and adding int(s[i]) gives what we need below. 
 
     {{ 10 * val + int(s[i]) = 10i * int(s[0]) + … + 10 * int(s[i-1]) + int(s[i]) }} 
    int d = charToInt(s[i]);     // in our notation, now d = int(s[i]) 
     {{ 10 * val + d = 10i * int(s[0]) + … + 10 * int(s[i-1]) + int(s[i]) }} 
    val = 10 * val + d; 
     {{ val = 10i * int(s[0]) + … + 10 * int(s[i-1]) + int(s[i]) }} 
    i = i + 1; 
     {{ val = 10i-1 * int(s[0]) + … + 10 * int(s[i-2]) + int(s[i-1]) }} 
  } 
 
¯ 
   {{ val = 10i-1 * int(s[0]) + … + 10 * int(s[i-2]) + int(s[i-1]) and i = n }} 
     Since i = n, we can substitute it into the val = … part , giving the claim below. 
 
   {{ Postcondition: val = 10n-1 * int(s[0]) + … + 10 * int(s[n-2]) + int(s[n-1]) }} 
   return val; 
} 


