
CSE 331
Software Design & Implementation

James Wilcox
Autumn 2021

Subtypes and Subclasses

What is subtyping?

Sometimes “every B is an A”
– examples in a library database:

• every book is a library holding
• every CD is a library holding

For subtyping, “B is a subtype of A” means:
– “every object that satisfies the rules for a B

also satisfies the rules for an A”
– (B is a strengthening of A)

Goal: code written using A's spec operates correctly if given a B
– plus: clarify design, share tests, (sometimes) share code

2

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE 331 Autumn 2021

Subtypes are substitutable

Subtypes are substitutable for supertypes
– Liskov substitution principle
– instances of subtype won't surprise client by failing to satisfy the

supertype's specification
– instances of subtype won't surprise client with more expectations

than the supertype's specification

We say B is a (true) subtype of A if B has a stronger specification than A
– (or is equally strong)
– this is not the same as a Java subtype (e.g. subclass)
– Java subclasses that are not true subtypes: confusing & dangerous

• but unfortunately common L
• Java allows casting sub- to supertypes assuming true subtypes

3CSE 331 Autumn 2021

Subtyping vs. subclassing

Substitution (subtype) is a matter of specifications
– B is a subtype of A iff an object of B can masquerade as an

object of A in any context
– B is a subtype if its spec is is a strengthening of A’s spec

Inheritance (subclass) is a matter of implementations
– factor out repeated code
– to create a new class, write only the differences

Java purposely merges these notions for classes:
– every subclass is a Java subtype
– but not necessarily a true subtype
– (though Java casting rules assume true subtypes)

4CSE 331 Autumn 2021

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products…

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice() {

return price;
}

public int getTax() {
return (int)(getPrice() * 0.086);

}
…

}

... and we need a class for products that are on sale
5CSE 331 Autumn 2021

Copy and Paste

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice() {

return (int)(price*factor);
}
public int getTax() {

return (int)(getPrice() * 0.086);
}
…

}

Not a good choice. — Why? (hint: properties of high quality code)

6CSE 331 Autumn 2021

Inheritance makes small extensions small

Better:

class SaleProduct extends Product {
private float factor;
public int getPrice() {
return (int)(super.getPrice()*factor);

}
}

7CSE 331 Autumn 2021

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods
– in implementation:

• simpler maintenance: fix bugs once (changeability)
– in specification:

• clients who understand the superclass specification need
only study novel parts of the subclass (readability)

• differences not buried under mass of similarities
– modularity: can ignore private fields and methods of superclass

(if properly designed)

• Ability to substitute new implementations (modularity)
– no client code changes required to use new subclasses

8CSE 331 Autumn 2021

Subclassing can be misused

• Poor design can produce subclasses that depend on many
implementation details of superclasses
– super- and sub-classes are often highly interdependent

(i.e., tightly coupled)
• Changes in superclasses can break subclasses

– “fragile base class problem”

• Subtyping and implementation inheritance are orthogonal!
– subclassing gives you both
– sometimes you want just one. instead use:

• interfaces: subtyping without inheritance
• composition: use implementation without subtyping

– can seem less convenient, but often better long-term

9CSE 331 Autumn 2021

(NON-)EXAMPLES

Is every square a rectangle?
interface Rectangle {
// effects: fits shape to given size:
// thispost.width = w, thispost.height = h
void setSize(int w, int h);

}
interface Square extends Rectangle {…}

Which is the best option for Square’s setSize specification?
1.// effects: sets all edges to given size
void setSize(int edgeLength);

2. // requires: w = h
// effects: fits shape to given size

void setSize(int w, int h);
3.// effects: sets this.width and this.height to w
void setSize(int w, int h);

4. // effects: fits shape to given size
// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;

11CSE 331 Autumn 2021

Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
– Rectangles are expected to have a width and height

that can be mutated independently
– Squares violate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
– Squares are expected to have equal widths and heights
– Rectangles violate that expectation, could surprise client

Subtyping is not always intuitive
– but it forces clear thinking and prevents errors

Solutions:
– make them unrelated (or siblings)
– make them immutable!

• recovers elementary-school intuition

12

Rectangle

Square

Square

Rectangle

Shape

Square Rectangle

CSE 331 Autumn 2021

Inappropriate subtyping in the JDK
class Hashtable {

public void put(Object key, Object value){…}
public Object get(Object key){…}

}

// Keys and values are strings.
class Properties extends Hashtable {

public void setProperty(String key, String val) {
put(key,val);

}
public String getProperty(String key) {
return (String)get(key);

}
}

13CSE 331 Autumn 2021

Properties p = new Properties();
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
– keys and values are Strings

But client can treat Properties as a Hashtable
– can put in arbitrary content, break rep invariant

From Javadoc:
Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised" Properties object
that contains a non-String key or value, the call will fail.

14CSE 331 Autumn 2021

Solution: Composition

class Properties {
private Hashtable hashtable;

public void setProperty(String key, String value) {
hashtable.put(key,value);

}

public String getProperty(String key) {
return (String) hashtable.get(key);

}

…
}

Now, there are no get and put methods on Properties. (Best choice.)

15CSE 331 Autumn 2021

You do not need to be a subclass
of every class whose code you want to use!

SUBTYPES VS SUBCLASSES

Substitution principle for methods
Constraints on methods

– For each supertype method, subtype must have such a method
• (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
– ask nothing extra of client (“weaker precondition”)

• requires clause is at most as strict as in supertype’s method
– guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the supertype method
• no new entries in modifies clause
• promise more (or the same) in returns & throws clauses

– cannot change return values or switch between return and throws

17CSE 331 Autumn 2021

Spec strengthening: argument/result types

For method inputs:
– argument types in A’s foo could be

replaced with supertypes in B’s foo
– places no extra demand on the clients
– but Java does not have such overriding

• these are different methods in Java!

For method outputs:
– result type of A’s foo may be replaced by

a subtype in B’s foo
– no new exceptions (for values in the domain)
– existing exceptions can be replaced with subtypes

(none of this violates what client can rely on)

18

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE 331 Autumn 2021

Recall: Subtyping Example

class Product {
private int price; // in cents
public int getPrice() {

return price;
}
public int getTax() {

return (int)(getPrice() * 0.086);
}

}

class SaleProduct extends Product {
private float factor;
public int getPrice() {
return (int)(super.getPrice()*factor);

}
} 19CSE 331 Autumn 2021

Substitution exercise

Suppose we have a method which, when given one product,
recommends another:

class Product {
Product recommend(Product ref);

}
Which of these are possible forms of this method in SaleProduct
(a true subtype of Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref)

throws NoSaleException;

// good

// good, but in Java is
overloading

// bad

// bad

20CSE 331 Autumn 2021

