
CSE 331
Software Design & Implementation

James Wilcox
Autumn 2021

Subtypes and Subclasses



SUBTYPES VS SUBCLASSES



Substitution principle for classes
If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
– anything provable about an A is provable about a B
– if an instance of subtype is treated purely as supertype (only 

supertype methods/fields used), then the result should be 
consistent with an object of the supertype being manipulated

B is permitted to strengthen properties and add properties
– an overriding method must have a stronger (or equal) spec
– fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec
– no overriding method with a weaker spec
– no method removal

3CSE 331 Autumn 2021



Substitution principle for methods
Constraints on methods

– For each supertype method, subtype must have such a method
• (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
– ask nothing extra of client (“weaker precondition”)

• requires clause is at most as strict as in supertype’s method
– guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the supertype method
• no new entries in modifies clause
• promise more (or the same) in returns & throws clauses

– cannot change return values or switch between return and throws

4CSE 331 Autumn 2021



Java subtyping

• Java types:
– defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and  
B implements A declarations

• In a Java subtype, each corresponding method has:
– same argument types

• if different, then overloading — unrelated methods
– compatible return types
– no additional declared exceptions

5CSE 331 Autumn 2021



Java subtyping guarantees

A variable’s run-time type (i.e., the class of its run-time value) is a 
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error
If a variable of declared (compile-time) type T1 holds a 
reference to an object of actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:
– objects always have implementations of the methods 

specified by their declared type
– if all subtypes are true subtypes, then all objects meet the 

specification of their declared type

Rules out a huge class of bugs
6CSE 331 Autumn 2021



Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods
– have smaller requires
– have smaller modifies
– have stronger postconditions

• Java only checks the return type not the postcondition
• could compute a completely different function

– have stronger effects
– have stronger throws (& only for the same cases as before)
– have no new unchecked exceptions

7CSE 331 Autumn 2021



EQUALS WITH SUBCLASSES



equals specification
public boolean equals(Object obj) should be:

• reflexive: for any reference value x, x.equals(x) == true

• symmetric: for any reference values x and y,
x.equals(y) == y.equals(x)

• transitive: for any reference values x, y, and z, if x.equals(y)
and y.equals(z) are true, then x.equals(z) is true

• consistent: for any reference values x and y, multiple 
invocations of x.equals(y) consistently return true or 
consistently return false (provided neither is mutated)

• For any non-null reference value x, x.equals(null) should 
return false

9CSE 331 Autumn 2021



Really fixed now
public class Duration {

@Override
public boolean equals(Object o) {

if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Correct and idiomatic Java
• Gets null case right (null instanceof C always false)
• Cast cannot fail 

CSE 331 Autumn 2021 10



Two subclasses

class CountedDuration extends Duration {
public static numCountedDurations = 0;
public CountedDuration(int min, int sec) {
super(min,sec);
++numCountedDurations;

}
}
class NanoDuration extends Duration {
private final int nano;
public NanoDuration(int min, int sec, int nano){
super(min,sec);
this.nano = nano;

}
public boolean equals(Object o) { … }
…

}
CSE 331 Autumn 2021 11



CountedDuration is (probably) fine

• CountedDuration does not override equals
– inherits Duration.equals(Object)

• Will (implicitly) treat any CountedDuration like a Duration
when checking equals
– o instanceof Duration is true if o is CountedDuration

• Any combination of Duration and CountedDuration objects 
can be compared
– equal if same contents in min and sec fields
– works because o instanceof Duration is true when o

is an instance of CountedDuration

CSE 331 Autumn 2021 12



NanoDuration is (probably) not fine

• If we don’t override equals in NanoDuration, then objects 
with different nano fields will be equal

• Using what we have learned:

@Override
public boolean equals(Object o) {
if (!(o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

• But we have violated the equals contract
– Hint: Compare a Duration and a NanoDuration

CSE 331 Autumn 2021 13



The symmetry bug

public boolean equals(Object o) {
if (!(o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

This is not symmetric!
Duration d1 = new NanoDuration(5, 10, 15);

Duration d2 = new Duration(5, 10);

d1.equals(d2);

d2.equals(d1);

CSE 331 Autumn 2021 14

// false

// true



Fixing symmetry
This version restores symmetry by using Duration’s equals if the 
argument is a Duration (and not a NanoDuration)

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

// if o is a normal Duration, compare without nano
if (!(o instanceof NanoDuration))
return super.equals(o);

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

Alas, this still violates the equals contract
– Transitivity…

CSE 331 Autumn 2021 15



The transitivity bug

CSE 331 Autumn 2021 16

Duration d1 = new NanoDuration(1, 2, 3);

Duration d2 = new Duration(1, 2);

Duration d3 = new NanoDuration(1, 2, 4);

d1.equals(d2);

d2.equals(d3);

d1.equals(d3);

NanoDuration

min

sec

nano

1
2
3

Duration

min

sec

1
2

NanoDuration

min

sec

nano

1
2
4

// true

// true

// false!



No perfect solution

• Effective Java says not to (re)override equals like this
– (unless superclass is non-instantiable)
– generally good advice
– but there is one way to satisfy equals contract (see below)

• Two less-than-perfect approaches on next two slides:
1. Don’t make NanoDuration a subclass of Duration

– fact that equals should be different is a hint it’s not a subtype
2. Change Duration’s equals so only Duration objects 

that are not (proper) subclasses of Duration are equal

CSE 331 Autumn 2021 17



Option 1: avoid subclassing
Choose composition over subclassing (Effective Java)

– often good advice in general (we’ll discuss more later on)
– many programmers overuse subclassing

public class NanoDuration {
private final Duration duration;
private final int nano;
…

}

Solves some problems: 
– clients can choose which type of equality to use

Introduces others:
– can’t use NanoDurations where Durations are expected 

(since it is not a subtype)
CSE 331 Autumn 2021 18



Option 2: the getClass trick
Check if o is a Duration and not a subtype:

@Overrides
public boolean equals(Object o) { // in Duration
if (o == null)
return false;

if (!o.getClass().equals(getClass()))
return false;

Duration d = (Duration) o; 
return d.min == min && d.sec == sec;

}

But this breaks CountedDuration!
– subclasses do not “act like” instances of superclass because 

behavior of equals changes with subclasses
– generally considered wrong to “break” subtyping like this

CSE 331 Autumn 2021 19



Subclassing summary

• Subtypes should be useable wherever the type is used
– Liskov substitution principle

• Unresolvable tension between
– what we want for equality: treat subclasses differently
– what we want for subtyping: treat subclasses the same

• No perfect solution for all cases...
• Choose whether you want subtyping or not

– in former case, don’t override equals (make it final)
– in latter case, can still use composition instead

• this matches the advice in Effective Java and from us (later)
– almost always best to avoid getClass trick

CSE 331 Autumn 2021 20



DESIGNING FOR 
INHERITANCE



Inheritance can break encapsulation
public class InstrumentedHashSet<E>

extends HashSet<E> {
private int addCount = 0;  // count # insertions
public InstrumentedHashSet(Collection<? extends E> c){

super(c);
}
public boolean add(E o) {

addCount++;
return super.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() { return addCount; }

}
22CSE 331 Autumn 2021



Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s =

new InstrumentedHashSet<String>();
System.out.println(s.getAddCount()); 
s.addAll(Arrays.asList("CSE", "331"));
System.out.println(s.getAddCount()); 

• Answer depends on implementation of addAll in HashSet
– different implementations may behave differently!
– if HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:
– “adds all elements in the specified collection to this collection.”
– does not specify whether it calls add

• Lesson: subclassing typically requires designing for inheritance
– self-calls is not the only example… (more in future lectures)

// 0

// 4?!

23



Solutions

1. Change spec of HashSet
– indicate all self-calls
– less flexibility for implementers

2. Avoid spec ambiguity by avoiding self-calls
a) “re-implement” methods such as addAll

• more work
b) use composition not inheritance

• no longer a subtype (unless an interface is handy)
• bad for equality tests, callbacks, etc.

24CSE 331 Autumn 2021



Solution:  composition

public class InstrumentedHashSet<E> {
private final HashSet<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++;   return s.add(o);
}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();   
return s.addAll(c);

}
public int getAddCount() {  return addCount; }
// ... and every other method specified by HashSet<E>

}

The implementation 
no longer matters

Delegate

25CSE 331 Autumn 2021



Composition (wrappers, delegation)

Implementation reuse without inheritance

• Easy to reason about. Self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):
– does not preserve subtyping
– sometimes tedious to write
– may be hard to apply to equality tests, callbacks, etc.

• (although we already saw equals is hard for subclasses)

26CSE 331 Autumn 2021



Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore
– so can't easily substitute it

• It may be a true subtype of HashSet
– but Java doesn't know that!
– Java requires declared relationships
– not enough just to meet specification

• Interfaces to the rescue
– can declare that we implement interface Set
– if such an interface exists

27CSE 331 Autumn 2021



Interfaces reintroduce Java subtyping
public class InstrumentedHashSet<E> implements Set<E> {
private final Set<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++;
return s.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() {  return addCount; }
// ... and every other method specified by Set<E>

}

normal Java style

28CSE 331 Autumn 2021



Interfaces and abstract classes

Provide interfaces for your functionality
– client code to interfaces rather than concrete classes
– allows different implementations later
– facilitates composition, wrapper classes

• basis of lots of useful, clever techniques
• we'll see more of these later

Consider also providing helper/template abstract classes
– makes writing new implementations much easier
– not necessary to use them to implement an interface, so 

retain freedom to create radically different implementations

29CSE 331 Autumn 2021



Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E> 
abstract class AbstractCollection<E> 

implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E> 
// skeletal implementation of List<E>
abstract class AbstractList<E> 

extends AbstractCollection<E> 
implements List<E>

// an old friend...
class ArrayList<E> extends AbstractList<E>

30CSE 331 Autumn 2021



Why interfaces instead of classes?

Java design decisions:
– a class has exactly one superclass
– a class may implement multiple interfaces
– an interface may extend multiple interfaces

Observation:
– multiple superclasses are difficult to use and to implement
– multiple interfaces, single superclass gets most of the benefit

31CSE 331 Autumn 2021



Pluses and minuses of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation
– a subclass may need to depend on unspecified details of the 

implementation of its superclass
• e.g., pattern of self-calls

– subclass may need to evolve in tandem with superclass
• okay when implementation of both is under control of the 

same programmer
– this is tricky to get right and is a source of subtle bugs

• Effective Java:
– either design for inheritance or else prohibit it
– favor composition (and interfaces) to inheritance

32CSE 331 Autumn 2021


