
CSE 331
Software Design & Implementation

James Wilcox
Autumn 2021

Lecture 5 – Specifications

Goals

We want our code to be:
1. Correct

– everything else is secondary
2. Easy to change

– most code written is changing existing systems
3. Easy to understand

– corollary of previous two
4. Easy to scale

– modular

CSE 331 Autumn 2021 2

Specifications

To prove correctness of our method, need
• precondition
• postcondition

Without these, we can’t say whether the code is correct
These tell us what it means to be correct

They are the specification for the method

CSE 331 Autumn 2021 3

Correctness =
Validity of

{{ P }} S {{ Q }}

Importance of Specifications

Specifications are essential to correctness

They are also essential to changeability
• need to know what changes will break code using it

They are also essential to understandability
• need to tell readers what it is supposed to do

They are also essential to modularity…

CSE 331 Autumn 2021 4

A discipline of modularity

• Two ways to view a program:
– the implementer's view (how to build it)
– the user’s / client’s view (how to use it)

• It helps to apply these views to program parts:
– while implementing one part, consider yourself a client of

any other parts it depends on
– try not to look at other parts through implementer's eyes
– helps dampen interactions between parts

• Formalized through the idea of a specification

5CSE 331 Autumn 2021

A specification is a contract

• A set of requirements agreed to by the user and the
manufacturer of the product
– describes their expectations of each other

• Facilitates simplicity via two-way isolation (modularity)
– isolate client from implementation details
– isolate implementer from how the part is used
– discourages implicit, unwritten expectations

• Facilitates change
– reduces the “Medusa effect”: the specification,

rather than the code, gets “turned to stone” by
client dependencies

CSE 331 Autumn 2021 6

Isn’t the interface sufficient?
The interface defines the boundary between implementers and users:

public class MyList implements List<E> {
public E get(int x) { return null; }
public void set(int x, E y){}
public void add(E elem) {}
public void add(int index, E elem){}
…
public static <T> boolean isSub(List<T> a, List<T> b){

return false;
}

}

Interface provides the syntax and types
But nothing about the behavior and effects
– Provides too little information to clients

7CSE 331 Autumn 2021

Why not just read code?
static <T> boolean ???(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

How long does it take you to figure out what this does?
8CSE 331 Autumn 2021

Recall the sublist example
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

9CSE 331 Autumn 2021

Code is complicated

• Code gives more detail than needed by client

• Understanding or even reading every line of code is an
excessive burden
– suppose you had to read source code of Java libraries to

use them
– same applies to developers of different parts of the libraries
– would make it impossible to build million-line programs

• Client cares only about what the code does, not how it does it

10CSE 331 Autumn 2021

Code is ambiguous

• Code seems unambiguous and concrete
– but which details of code's behavior are essential, and which

are incidental?

• Code invariably gets rewritten
– client needs to know what they can rely on

• what properties will be maintained over time?
• what properties might be changed by future optimization,

improved algorithms, or bug fixes?
– implementer needs to know what features the client depends

on, and which can be changed

11CSE 331 Autumn 2021

Comments are essential

Most comments convey only an informal, general idea of what that the
code does:

// This method checks if "part" appears as a
// subsequence in "src"
static <T> boolean sub(List<T> src, List<T> part){
...

}

Problem: ambiguity remains
– should be True if part is empty and False if src is empty
– what if src and part are both empty?

12CSE 331 Autumn 2021

From vague comments to specifications

• Roles of a specification:
– client agrees to rely only on information in the description in

their use of the part
– implementer of the part promises to support everything in the

description
• otherwise is perfectly at liberty

• Sadly, much code lacks a specification
– clients often work out what a method/class does in

ambiguous cases by running it and depending on the results
– leads to bugs and programs with unclear dependencies,

reducing simplicity and flexibility

13CSE 331 Autumn 2021

A more careful description of sub
// Check whether “part” appears as a subsequence in “src”

needs to be given some caveats:

// * src and part cannot be null
// * If src is empty list, always returns false

14CSE 331 Autumn 2021

Recall the sublist example
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

15CSE 331 Autumn 2021

A more careful description of sub
// Check whether “part” appears as a subsequence in “src”

needs to be given some caveats:

// * src and part cannot be null
// * If src is empty list, always returns false
// * Results may be unexpected if partial matches
// can happen right before a real match; e.g.,
// list (1,2,1,3) will not be identified as a
// sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:

// This method scans the “src” list from beginning
// to end, building up a match for “part”, and
// resetting that match every time that...

16CSE 331 Autumn 2021

A better approach

It’s better to simplify than to describe complexity!

Complicated description suggests poor design
– rewrite sub to be more sensible, and easier to describe

// Returns true iff there exist sequences A and B (possibly
// empty) such that src = A + part + B, where + means concat
static <T> boolean sub(List<T> src, List<T> part) {

• Mathematical flavour not always necessary, but avoids ambiguity
• “Declarative” style is important: avoids reciting or depending on

operational/implementation details

17CSE 331 Autumn 2021

Sneaky fringe benefit of specs

• The discipline of writing specifications changes the incentive
structure of coding
– rewards code that is easy to describe and understand
– punishes code that is hard to describe and understand

• (even if it is shorter or easier to write)

• If you find yourself writing complicated specifications, it is an
incentive to redesign
– in sub, code that does exactly the right thing may be slightly

slower than a hack that assumes no partial matches before
true matches, but cost of forcing client to understand the
details is too high

18CSE 331 Autumn 2021

Writing specifications with Javadoc

• Javadoc
– Sometimes can be daunting; get used to using it
– Very important feature of Java (copied by others)

• Javadoc convention for writing specifications
– Method signature
– Text description of method
– @param: description of what gets passed in
– @return: description of what gets returned
– @throws: exceptions that may occur

19CSE 331 Autumn 2021

Example: Javadoc for String.contains

public boolean contains(CharSequence s)

Returns true if and only if this string contains
the specified sequence of char values.

Parameters:

s- the sequence to search for

Returns:

true if this string contains s, false otherwise

Throws:

NullPointerException – if s is null

Since:

1.5

20CSE 331 Autumn 2021

CSE 331 specifications

• The precondition: constraints that hold before the method is called
(if not, all bets are off)
– @requires: spells out any obligations on client

• The postcondition: constraints that hold after the method is called
(if the precondition held)
– @modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be untouched
– @effects: gives guarantees on final state of modified objects
– @throws: lists possible exceptions and conditions under

which they are thrown (Javadoc uses this too)
– @return: describes return value (Javadoc uses this too)

21CSE 331 Autumn 2021

Note: these are abbreviated.
In your code, it must be
@spec.requires,
@spec.modifies, etc.

Example 1

static <T> int changeFirst(List<T> lst, T oldelt, T newelt)
requires lst is non-null
modifies lst
effects change the first occurrence of oldelt in lst to newelt

(making no other changes to lst)
returns the position of the element in lst that was oldelt and

is now newelt or -1 if not in oldelt

static <T> int changeFirst(
List<T> lst, T oldelt, T newelt) {

int i = 0;
for (T curr : lst) {

if (curr == oldelt) {
lst.set(newelt, i);
return i;

}
i = i + 1;

}
return -1;

}
22CSE 331 Autumn 2021

Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies none
effects none
returns a list of same size where the ith element is

the sum of the ith elements of lst1 and lst2

static List<Integer> zipSum(
List<Integer> lst1, List<Integer> lst2) {

List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lst1.size(); i++) {

res.add(lst1.get(i) + lst2.get(i));
}
return res;

} 23CSE 331 Autumn 2021

Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.

modifies lst1
effects ith element of lst2 is added to the ith element of lst1

returns none

static void listAdd(
List<Integer> lst1, List<Integer> lst2) {

for(int i = 0; i < lst1.size(); i++) {
lst1.set(i, lst1.get(i) + lst2.get(i));

}
} 24CSE 331 Autumn 2021

Should requires clause be checked?

• Preconditions are common in ordinary classes
– in public libraries, necessary to deal with all possible inputs

• If the client calls a method without meeting the precondition, the
code is free to do anything
– including pass corrupted data back
– it is a good idea to fail fast: to provide an immediate error,

rather than permitting mysterious bad behavior

• Rule of thumb: Check if cheap to do so
– Example: list has to be non-null à check
– Example: list has to be sorted à skip
– Be judicious if private / only called from your code

25CSE 331 Autumn 2021

Comparing specifications

• Occasionally, we need to compare different specification:
– comparing potential specifications of a new class
– comparing new version of a specification with old

• recall: most work is making changes to existing code

• For that, we often consider stronger and weaker specifications...

26CSE 331 Autumn 2021

Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if
– for every input allowed by the spec precondition,

M produces an output allowed by the spec postcondition

If M does not satisfy S, either M or S (or both!) could be “wrong”
– “one person’s feature is another person’s bug.”
– usually better to change the implementation than the spec

27CSE 331 Autumn 2021

Stronger vs Weaker Specifications

• Definition 1: specification S2 is stronger than S1 iff
– for any implementation M: M satisfies S2 => M satisfies S1
– i.e., S2 is harder to satisfy

• Two specifications may be incomparable
– but we are usually choosing between stronger vs weaker

28CSE 331 Autumn 2021

S2 S1 (satisfying implementations)

Stronger vs Weaker Specifications

• An implementation satisfying a stronger specification can be
used anywhere that a weaker specification is required
- can use a method satisfying S2 anywhere S1 is expected

Making changes to a specification...
• changing from S1 to S2 should not break clients

– but it could break implementation
• changing from S2 to S1 should not break implementation

– but it could break clients!

CSE 331 Autumn 2021 29

S2 S1

Stronger vs Weaker Specifications

• Definition 2: specification S2 is stronger than S1 iff
– postcondition of S2 is stronger than that of S1

(on all inputs allowed by both)
– precondition of S2 is weaker than that of S1

• A stronger specification:
– is harder to satisfy
– gives more guarantees to the caller

• A weaker specification:
– is easier to satisfy
– gives more freedom to the implementer

30CSE 331 Autumn 2021

Example 1 (stronger postcondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

31CSE 331 Autumn 2021

Which is stronger?

Example 2 (weaker precondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

32CSE 331 Autumn 2021

Which is stronger?

Example 3
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

33CSE 331 Autumn 2021

Which is stronger?

“Strange” case: @throws

Compare:
S1:

@throws FooException if x<0
@return x+3

S2:
@return x+3

S3:
@requires x >= 0
@return x+3

• S1 & S2 are stronger than S3
• S1 & S2 are incomparable because they promise different,

incomparable things when x<0
CSE 331 Autumn 2021 34

Strengthening a specification

• Strengthen a specification by:
– Promising more (stronger postcondition):

• returns clause harder to satisfy
• effects clause harder to satisfy
• fewer objects in modifies clause
• more specific exceptions (subclasses)

– Asking less of client (weaker precondition)
• requires clause easier to satisfy

• Weaken a specification by:
– (Opposite of everything above)

35CSE 331 Autumn 2021

Which is better?

• Stronger does not always mean better!

• Weaker does not always mean better!

• Strength of specification trades off:
– usefulness to client
– ease of simple, efficient, correct implementation
– promotion of reuse and modularity
– clarity of specification itself

• “It depends”

CSE 331 Autumn 2021 36

Warnings on Specifications

Specifications are also the products of human design, so...

• They will contain bugs
– (recall the central dogma of this course)
– harder to fix the more people that have seen it

• “turns to stone” a bit more with each viewer

37CSE 331 Autumn 2021

XKCD
1172

Warnings on Specifications

Specifications are also the products of human design, so...

• They will contain bugs
– (recall the central dogma of this course)
– harder to fix the more people that have seen it

• “turns to stone” a bit more with each viewer

• Creating them requires judgement
– no “turn the crank” way to produce good specs (or invariants)
– harder but good for job security

39CSE 331 Autumn 2021

Back to Correctness…

Correctness Toolkit

• Learned forward and backward reasoning for
– assignment
– if statement
– while loop

• One missing element: function calls
– we needed specifications for that
– now we have them

CSE 331 Autumn 2021 41

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Autumn 2021 42

Forward

{{ P1 }}
c = f(a, b);

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Autumn 2021 43

Forward

{{ P1 }}
c = f(a, b);

{{ P1 and R(a,b,c) }}

if P1 implies P(a,b)

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Autumn 2021 44

Backward

c = f(a, b);
{{ Q }}

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Autumn 2021 45

Backward

{{ Q[c / f(a,b)] and P(a,b) }}
c = f(a, b);

{{ Q }}

solve R(a,b,c) for c
substitute c appears in Q

What about Recursion?

• As with loops, this does not prove termination
– infinite recursion (like infinite loops) could occur

• Separate argument to bound the running time

CSE 331 Autumn 2021 46

Toolkit for functional languages

• This is a toolkit for “imperative” languages
– ones with assignments and loops

• (Pure) functional languages lack those
– recursion used instead of loops

• Correctness for these languages is covered in CSE 311
– simple programming language consisting of

• recursively defined functions
• recursively defined data types

– same ideas apply to other functional languages

CSE 331 Autumn 2021 47

