# CSE 331 Software Design & Implementation

James Wilcox Autumn 2021 Lecture 4½ – Reasoning Wrap-up

# **Updates**

- Lots going on!
  - HW1 due Monday, October 11 at 5pm
  - HW3 due Thursday, October 14 at 11pm
  - HW2 due the following Monday, October 18 at 5pm

# **Interview Question**

#### **Problem Description**

Given a matrix M (of size m x n), where every row and every column is sorted, find out whether a given number x is in the matrix.

Given a sorted matrix M (of size m x n), where every row and every column is sorted, find out whether a given number x is in the matrix.



(darker color means larger)

Given a sorted matrix M (of size m x n), where every row and every column is sorted, find out whether a given number x is in the matrix.





(darker color means larger)

(One) **Idea**: Trace the contour between the numbers  $\leq x$  and > x in each row to see if x appears.



Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]

- for each i, holds for exactly one j
- holds when we are in the right spot in row i

Initialization:



Partial Invariant: M[i,0], ..., M[i,j-1] <  $x \le M[i,j]$ , ..., M[i,n-1]

How do we get the invariant to hold with i = 0?

- no easy way to initialize it so the invariant holds
- we need to search...

Initialization:



New goal: M[0,0], ..., M[0,j-1] <  $x \le M[0,j]$ , ..., M[0,n-1]

- will need a loop to find j
- Loop invariant: x ≤ M[0,j], ..., M[0,n-1]
  - weakening of the new goal
  - decrease j until we get M[0,j-1] to also hold



Initialization:



```
int i = 0;
int j = n;
{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while ( ?? )
??
{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}</pre>
```

Initialization: i



i

Initialization:





CSE 331 Autumn 2021

Initialization:



int i = 0, j = n; {{ Inv: x ≤ M[i,j], ..., M[i,n-1] }} while (j > 0 && x <= M[i,j-1]) { ??  $\downarrow \{\{x ≤ M[i,j], ..., M[i,n-1] and x ≤ M[i,j-1] \}\}$ j = j - 1;  $\uparrow \{\{x ≤ M[i,j-1], ..., M[i,n-1] \}\}$ {{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}</pre>

CSE 331 Autumn 2021

Initialization: i Initialization: i

CSE 331 Autumn 2021

i

Initialization:





That finds the right column in row 0

- can now check M[0,j] = x (if j < n)</li>
- if not, we can move onto the next row
  - x cannot be anywhere in the row if it's not at M[i,j]
  - set i = i + 1

Process continues in each row thereafter...



- Make progress by setting i = i + 1
- When i increases, the invariant may be broken
  - we have  $x \le M[i,j] \le M[i+1,j]$  since columns are sorted
  - and  $M[i+1,j] \le M[i+1,j+1]$ , ..., M[i+1,n-1] since rows are sorted
  - so we get x ≤ M[i +1,j], .., M[i +1,n-1]



- Make progress by setting i = i + 1
- When i increases, the invariant may be broken
  - we have x <= M[i +1,j], ..., M[i +1,n-1]</p>
  - may need to restore invariant for M[i,0], ..., M[i,j-1] < x</li>
  - decrease j until it holds again...
    - when have we seen this before?
    - initialization



- Make progress by setting i = i + 1
- When i increases, the invariant may be broken
  - we have x <= M[i +1,j], ..., M[i +1,n-1]</p>
  - may need to restore invariant for M[i,0], ..., M[i,j-1] < x</li>
  - could copy and paste the same loop
    - or you can do it with one copy

we can write

instead of

int i = 0, j = n;[move j left] {{ Inv: M[i,0], ..., M[i,j-1] <  $x \le M[i,j], ..., M[i,n-1]$  }} while (i != m) { i = i + 1;[move j left] } int i = 0, j = n;while (i != m) { [move j left] {{  $M[i,0], ..., M[i,j-1] < x \le M[i,j], ..., M[i,n-1]$ }} i = i + 1;}

```
int i = 0;
int j = n;
while (i != m) {
  {{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
  while (j > 0 \&\& x \le M[i, j-1])
     j = j - 1;
  {{ M[i,0], ..., M[i,j-1] < x \le M[i,j], ..., M[i,n-1] }}
  if (j < n \&\& x == M[i,j])
     return true;
  i = i + 1;
}
return false;
```





return false;

#### Worksheet

# **Reasoning Summary**

# **Reasoning Summary**

- Checking correctness can be a mechanical process
  - using forward or backward reasoning
- This requires that loop invariants are provided
  - those cannot be produced automatically
- As long as you document your loop invariants, it should not be too hard for someone else to review your code

- Write down loop invariants for all non-trivial code
- They are often best avoided for "for each" loops:

```
{{ Inv: printed all the strings seen so far }}
for (String s : L)
System.out.println(s);
```

- Write down loop invariants for all non-trivial code
- They are often best avoided for "for each" loops:

```
// Print the strings in L, one per line.
for (String s : L)
   System.out.println(s);
```

- Write down loop invariants for all non-trivial code
- They are often best avoided for "for each" loops:

```
{{ Inv: B has 2*x + 1 for each element x removed so far }}
for (int x : A)
B.add(2*x + 1);
```

- Write down loop invariants for all non-trivial code
- They are often best avoided for "for each" loops:

// Set B = 2\*A + 1 (element-wise)
for (int x : A)
 B.add(2\*x + 1);

- Write down loop invariants for all non-trivial code
- They are often best avoided for "for each" loops.
- Invariants are more helpful when a variable incorporates information from multiple iterations

• Use your best judgement!

# **Reasoning Summary**

- You can check correctness by reasoning alone
- Correctness: tools, inspection, testing
  - reasoning through your own code
  - do code reviews
- Practice!
  - essential skill for professional programmers

# **Reasoning Summary**

- You will eventually do this in your head for most code
- Formalism remains useful
  - especially tricky problems
  - interview questions (often tricky)
    - see last example...

Next Topic...

#### A Problem

"Complete this method such that it returns the location of the largest value in the first **n** elements of the array **arr**."

```
int maxLoc(int[] arr, int n) {
    ...
}
```

# **One Solution**

```
int maxLoc(int[] arr, int n) {
  int maxIndex = 0;
  int maxValue = arr[0];
  // Inv: maxValue = max of arr[0] .. arr[i-1] and
  maxValue = arr[maxIndex]
  for (int i = 1; i < n; i++) {</pre>
    if (arr[i] > maxValue) {
      maxIndex = i;
                                    Is this code correct?
      maxValue = arr[i];
    }
                               What if n = 0?
                               What if n > arr.length?
  return maxIndex;
                               What if there are two maximums?
}
```

# A Problem

"Complete this method such that it returns the location of the largest value in the first **n** elements of the array **arr**."

```
int maxLoc(int[] arr, int n) {
    ...
}
```

Could we write a specification so that this is a correct solution?

- throw <code>IllegalArgumentException</code> if n <= 0
- throw ArrayOutOfBoundsException if n > arr.length
- return smallest index achieving maximum

# Morals

- You can all write the code correctly
- Writing the specification was harder than the code
  - multiple choices for the "right" specification
    - must carefully think through corner cases
  - once the specification is chosen, code is straightforward
  - (both of those will be recurrent themes)
- Some math (e.g. "if n <= 0") often shows up in specifications

– English ("if n is less or equal to than 0") is often worse

## How to Check Correctness

- Step 1: need a **specification** for the function
  - can't argue correctness if we don't know what it should do
  - surprisingly difficult to write!
- Step 2: determine whether the code meets the specification
  - apply reasoning
  - usually easy with the tools we learned