
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2021

Lecture 2 – Reasoning About Straight-Line Code

CSE 331 Spring 2021 1

Motivation for Reasoning

• Need a way to determine, sans computer, whether code is correct

• Most important part of the correctness techniques
– tools, inspection, testing

• You need a way to do this in interviews
– this is why interviews are done without computers

• This is not easy (see HW0)

CSE 331 Spring 2021 2

Our Approach

• We will learn a set of formal tools for proving correctness
– (later, this will also allow us to generate the code)

• Most professionals can do reasoning like this in their head
– the interviewer is doing so while you write on the whiteboard
– eventually, it will be the same for you

• Learning the formal version is useful
– a “turn the crank” approach (no intuition required)
– necessary for hard problems

• we turn to formal tools when problems get too hard

CSE 331 Spring 2021 3

Hoare Logic

• Classic approach to logical reasoning about code
– named after its inventor, Sir Anthony Hoare

CSE 331 Spring 2021 4

Terminology of Hoare Logic

• The program state is the values of all the (relevant) variables

• An assertion is a true / false claim (proposition) about the state
at a given point during execution (e.g., on line 39)

• An assertion holds for a program state if the claim is true when
the variables have those values

• An assertion before the code is a precondition
– these represent assumptions about when that code is used

• An assertion after the code is a postcondition
– these represent what we want the code to accomplish

CSE 331 Spring 2021 5

Hoare Logic

• A Hoare triple is two assertions and one piece of code:
{ P } S { Q }

– P the precondition
– S the code
– Q the postcondition

• A Hoare triple { P } S { Q } is called valid if:
– in any state where P holds,

executing S produces a state where Q holds
– i.e., if P is true before S, then Q must be true after it
– otherwise the triple is called invalid

CSE 331 Spring 2021 6

specification
method body

code is correct iff triple is valid

Notation
• Hoare logic writes assertions in {..}

– since Java code also has {..}, I will use {{…}}
– e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math / logic not Java
– you can use the usual math notation

• (e.g., = instead of == for equals)
– purpose is communication with other humans (not computers)
– we will need and, or, not as well

• can also write use ⋀ (and) ⋁ (or) etc.

• The Java language also has assertions (assert statements)
– throws an exception if the condition does not evaluate true
– we will discuss these more later in the course

CSE 331 Spring 2021 7

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

CSE 331 Spring 2021 8

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ x != 0 }} y = x*x; {{ y > 0 }}

Valid
• y could only be zero if x were zero (which it isn’t)

CSE 331 Spring 2021 9

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

CSE 331 Spring 2021 10

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

{{ z != 1 }} y = z*z; {{ y != z }}

Invalid
• counterexample: z = 0

CSE 331 Spring 2021 11

Checking Validity

• So far: decided if a Hoare triple is valid by ... hard thinking

• Soon: “turn the crank” methods for reasoning about
– assignment statements
– conditionals
– [next lecture] loops
– (all code can be understood in terms of those 3 elements)

• Can use those to check correctness in a “turn the crank” manner

• Next: a way to compare different assertions
– useful, e.g., to compare possible preconditions

CSE 331 Spring 2021 12

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 ⇒ P2), then:
– P1 is stronger than P2
– P2 is weaker than P1

Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1

– the program states where P1 holds are a subset of the
program states where P2 holds

• So P1 puts more constraints on program states
• So it is a stronger set of requirements on the program state

– P1 gives you more information about the state than P2

CSE 331 Spring 2021

P1 P2

13

Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd

• x is prime and x > 2 is stronger than x is odd

CSE 331 Spring 2021 14

Hoare Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Example:
– Suppose P is x >= 0 and P1 is x > 0
– Suppose Q is y > 0 and Q1 is y >= 0
– Since {{ x >= 0 }} y = x+1 {{ y > 0 }} is valid,

{{ x > 0 }} y = x+1 {{ y >= 0 }} is also valid

CSE 331 Spring 2021 15

P1 P

Q Q1

Hoare Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Key points:
– always okay to strengthen a precondition
– always okay to weaken a postcondition

CSE 331 Spring 2021 16

P1 P

Q Q1

Forward & Backward Reasoning

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ _________________________________ }}

CSE 331 Spring 2021 18

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ _________________________________ }}

CSE 331 Spring 2021 19

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ _________________________________ }}

CSE 331 Spring 2021 20

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

CSE 331 Spring 2021 21

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}
x = 17;

{{ w > 0 and x = 17 }}
y = 42;

{{ w > 0 and x = 17 and y = 42 }}
z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}

CSE 331 Spring 2021 22

Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...

CSE 331 Spring 2021 23

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ _________________________________ }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2021 24

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ _________________________________ }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2021 25

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2021 26

Example of Backward Reasoning

Work backward from the desired postcondition

{{ w + 17 + 42 < 0 }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2021 27

Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the

condition with “x” will afterward since x = y then

• Later: if statements and loops...

CSE 331 Spring 2021 28

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

{{ w > 0 }}
x = 17;

y = 42;

z = w + x + y;

{{ z > 50 }}

CSE 331 Spring 2021 29

Example of Forward Reasoning

{{ w > 0 }}
x = 17;

{{ w > 0 and x=17 }}
y = 42;

{{ w > 0 and x=17 and y=42 }}
z = w + x + y;

{{ w > 0 and x=17 and y=42 and z = w + 59 }}

{{ z > 50 }}

CSE 331 Spring 2021 30

Do the facts that are always true
imply the facts we need?

I.e., is the bottom statement
weaker than the top one?

(Recall that weakening the postcondition is always okay.)

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}
x = 17;

y = 42;

z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2021 31

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}

{{ w + 17 + 42 < 0 }}
x = 17;

{{ w + x + 42 < 0 }}
y = 42;

{{ w + x + y < 0 }}
z = w + x + y;

{{ z < 0 }}

CSE 331 Spring 2021 32

Do the facts that are always true
imply the facts we need?

I.e., is the top statement
stronger than the bottom one?

⟺ {{ w < -59 }}

(Recall that strengthening the precondition is always okay.)

Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

{{ P }}
S1

S2

{{ Q }}

CSE 331 Spring 2021 33

Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

{{ P }}
S1

{{ P1 }}
{{ Q1 }}
S2

{{ Q }}

CSE 331 Spring 2021 34

Valid provided P1 implies Q1

Combining Forward & Backward

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:
• top assertion must imply bottom one

{{ P }} {{ P }}
S1 {{ Q1 }}
S2 S1

{{ P1 }} S2

{{ Q }} {{ Q }}

CSE 331 Spring 2021 35

{{ P }}
S1

{{ P1 }}
{{ Q1 }}
S2

{{ Q }}

Subtleties in Forward Reasoning...

• Forward reasoning can fail if applied blindly...

{{ }}
w = x + y;

{{ w = x + y }}
x = 4;

{{ w = x + y and x = 4 }}
y = 3;

{{ w = x + y and x = 4 and y = 3 }}

This implies that w = 7, but that is not true!
– w equals whatever x + y was before they were changed

CSE 331 Spring 2021 36

Fix 1

• Use subscripts to refer to old values of the variables
• Un-subscripted variables should always mean current value

{{ }}
w = x + y;

{{ w = x + y }}
x = 4;

{{ w = x1 + y and x = 4 }}
y = 3;

{{ w = x1 + y1 and x = 4 and y = 3 }}

CSE 331 Spring 2021 37

Fix 2 (better)

• Express prior values in terms of the current value

{{ }}
w = x + y;

{{ w = x + y }}
x = x + 4;

{{ w = x1 + y and x = x1 + 4 }}

Note for updating variables, e.g., x = x + 4:
• Backward reasoning just substitutes new value (no change)
• Forward reasoning requires you to invert the “+” operation

CSE 331 Spring 2021 38

Now, x1 = x - 4
So w = x1 + y ⟺ w = x - 4 + y⇒ {{ w = x - 4 + y }}

Forward vs. Backward

• Forward reasoning:
– Find strongest postcondition
– Intuitive: “simulate” the code in your head

• BUT you need to change facts to refer to prior values
– Inefficient: Introduces many irrelevant facts

• usually need to weaken as you go to keep things sane

• Backward reasoning
– Find weakest precondition
– Formally simpler
– Efficient
– (Initially) unintuitive

CSE 331 Spring 2021 39

If Statements

If Statements

Forward reasoning

{{ P }}
if (cond)

S1
else

S2

{{ ? }}

CSE 331 Spring 2021 41

If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

else

{{ P and not cond }}
S2

{{ ? }}

CSE 331 Spring 2021 42

If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

{{ P1 }}
else

{{ P and not cond }}
S2

{{ P2 }}
{{ ? }}

CSE 331 Spring 2021 43

If Statements

Forward reasoning

{{ P }}
if (cond)

{{ P and cond }}
S1

{{ P1 }}
else

{{ P and not cond }}
S2

{{ P2 }}
{{ P1 or P2 }}

CSE 331 Spring 2021 44

If Statements

CSE 331 Spring 2021 45

Backward reasoning

{{ ? }}
if (cond)

S1
else

S2

{{ Q }}

If Statements

CSE 331 Spring 2021 46

Backward reasoning

{{ ? }}
if (cond)

S1

{{ Q }}
else

S2

{{ Q }}
{{ Q }}

If Statements

CSE 331 Spring 2021 47

Backward reasoning

{{ ? }}
if (cond)

{{ Q1 }}
S1

{{ Q }}
else

{{ Q2 }}
S2

{{ Q }}
{{ Q }}

If Statements

CSE 331 Spring 2021 48

Backward reasoning
{{ cond and Q1 or

not cond and Q2 }}
if (cond)

{{ Q1 }}
S1

{{ Q }}
else

{{ Q2 }}
S2

{{ Q }}
{{ Q }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

y = x;

else
y = -x;

{{ ? }}

CSE 331 Spring 2021 49

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

else

{{ x < 0 }}
y = -x;

{{ ? }}

CSE 331 Spring 2021 50

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ ? }}

CSE 331 Spring 2021 51

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ (x >= 0 and y = x) or

(x < 0 and y = -x) }}
CSE 331 Spring 2021 52

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 53

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 54

Warning: many write {{ y >= 0 }} here

That is true but it is strictly weaker.
(It includes cases where y != x)

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 55

Backward reasoning

{{ ? }}
if (x >= 0)

y = x;
else

y = -x;

{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 56

Backward reasoning

{{ ? }}
if (x >= 0)

y = x;

{{ y = |x| }}
else

y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 57

Backward reasoning

{{ ? }}
if (x >= 0)

{{ x = |x| }}
y = x;

{{ y = |x| }}
else

{{ -x = |x| }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 58

Backward reasoning

{{ ? }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 59

Backward reasoning
{{ (x >= 0 and x >= 0) or

(x < 0 and x <= 0) }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 60

Backward reasoning

{{ x >= 0 or x < 0 }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

If-Statement Example

Forward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ x >= 0 and y = x }}
else

{{ x < 0 }}
y = -x;

{{ x < 0 and y = -x }}
{{ y = |x| }}

CSE 331 Spring 2021 61

Backward reasoning

{{ }}
if (x >= 0)

{{ x >= 0 }}
y = x;

{{ y = |x| }}
else

{{ x <= 0 }}
y = -x;

{{ y = |x| }}
{{ y = |x| }}

Next time: Loops...

