
Page 1 of 8

CSE 331 Spring 2021 Example Final Exam

Name _________________Solution___________________

The exam should only take about 1 hour.

Score: ________________ / 60

1. _____________ / 12

2. _____________ / 10

3. _____________ / 10

4. _____________ / 10

5. _____________ / 10

6. _____________ / 8

Page 2 of 8

Problem 1 (Reasoning)

Fill in an implementation of the method runLengthEncode on the next page. It takes
as input a string, str, an array of characters, chars, and an array of ints, lens. You
can assume the string and both arrays are of length at least n. You can assume that
str is non-empty and that it does not contain the character '\0'.

Your method will write its output into the arrays chars and lens, and it should return
a number t such that (after returning) str = chars[0] * lens[0] + ... + chars[t-1] * lens[t-1],
where a char * int means a string containing that many copies of the char. For example,
if str = “aaabbccccaaddd”, it would return t = 5 and leave chars[0..4] = [a, b, c, a, d] and
lens[0..4] = [3, 2, 4, 2, 3].

The invariant for the loop is already provided. Do not add any additional loops.

You do not need to turn in a complete proof of correctness, but you should complete
one since your code will be graded on correctness.

(Continued on the next page...)

Page 3 of 8

{{ P: 0 < n <= str.length chars.length, lens.length }}
int runLengthEncode(String str, int n, char[] chars, int[] lens) {

 int i = 0;
 int j = -1;
 char cur = ‘\0’;

 {{ Inv: P and str[0..i-1] = chars[0] * lens[0] + … + chars[j] * lens[j] and
 chars[0] != chars[1], ..., chars[j-1] != chars[j] and
 (i = 0 or cur = str[i-1]) }}
 while (i != n) {
 if (str.charAt(i) == chr) {
 lens[j] = lens[j] + 1;
 } else {
 j = j + 1
 cur = str.charAt(i);
 chars[j] = cur;
 lens[j] = 1;
 }
 i = i + 1;

 }

 {{ str[0..n-1] = chars[0] * lens[0] + … + chars[j] * lens[j] and
 chars[0] != chars[1], ..., chars[j-1] != chars[j]}}
 return j+1;
}

Page 4 of 8

Problem 2 (Testing)

Describe three test cases for the runLengthEncode method on the previous pages. The
three tests should fall into different subdomains, i.e., they should be from subsets of the
input where the expected or actual behavior is fundamentally different.

1. Input: str = __________”abc”_____________ and n = _____3______

Output: returns _______3________

 chars starts with ______________ [‘a’, ‘b’, ‘c’] ____________

 lens starts with _______________ [1, 1, 1] _______________

2. Input: str = _________ “aabbbcc” _________ and n = _____6______

Output: returns _______3________

 chars starts with ______________ [‘a’, ‘b’, ‘c’] ____________

 lens starts with _______________ [2, 3, 2] _______________

If it's not obvious, why is this testing a different behavior1 from the case above?

 Testing cases where characters are repeated

3. Input: str = __________”abc”_____________ and n = _____2______

Output: returns _______2________

 chars starts with _______________ [‘a’, ‘b’] _______________

 lens starts with ________________ [1, 1] _________________

If it's not obvious, why is this testing a different behavior1 from the cases above?

 Testing cases where not all characters in str should be examined.

1 You can define behavior, e.g., in terms of expected (black box) or actual (clear box) execution equivalence using
either implementation of runLengthEncode.

Page 5 of 8

Problem 3 (ADTs)

Suppose that we created a CharList ADT whose abstract value is a string but whose
concrete representation was the run-length encoding used in the previous problems:

/** Represents an immutable sequence of characters like "abc" or "". */
class CharList {

 private char[] chars;
 private int[] lens;
 private int count; // number of entries used in above arrays
...

(Note: count corresponds to the return value of runLengthEncode.)

What would the representation invariant2 be for this ADT?

chars != null and lens != null and 0 <= count <= chars.length, lens.length and
 chars[i-1] != chars[i] for i in 1 .. count-1

What would the abstraction function2 be for this ADT?

chars[0] * lens[0] + chars[1] * lens[1] + … + chars[count-1] * lens[count-1]

Fill in the implementation of the following method:

public void checkRep() {
 assert chars != null;
 assert lens != null;
 assert 0 <= count;
 assert count <= chars.length;
 assert count <= lens.length;

}

2 While CharList uses the same representation as the runLengthEncode methods from before, you cannot use
those methods to define your RI or AF here. You should define both directly in terms of the fields, as usual.

Page 6 of 8

Problem 4 (Reasoning II)

Fill in the implementation of the following method:

/** Returns the abstract value as a string. */
public String toString() {

 StringBuilder buf = new StringBuilder();
 for (int i = 0; i < count; i++) {
 for (int j = 0; j < lens[i]; j++) {
 buf.append(chars[i]);
 }

 return buf.toString();

}

Fill in the implementation of the following method (include the loop invariant):

/** @return Length of the list. */
public int size() {

 int s = 0;
 // s = length of chars[0]*lens[0] + … + chars[i-1]*lens[i-1]
 for (int i = 0; i < count; i++) {
 s += lens[i];
 }
 return s;

}

Page 7 of 8

Problem 5 (Testing II)

Describe three test cases for the CharList ADT defined on the previous pages. Each
case should be described by specifying the state of the fields of CharList. The three
tests should fall into different subdomains, i.e., they should be from subsets of the input
where the expected or actual behavior is fundamentally different.

1. Setup: chars = ________ [‘a’, ‘b’, ‘c’] _________
 lens = ________ [1, 1, 1] ___________
 count = __3__

Outputs: toString() returns ____”abc”________
 size() returns _____3__________

2. Setup: chars = ________ [‘a’, ‘c’] ____________
 lens = ________ [2, 1] _____________
 count = __2__

Outputs: toString() returns ______”aac”______
 size() returns _______3________

If it's not obvious, why is this testing a different behavior from the case above?

 Tests a case where characters are repeated.

3. Setup: chars = __________ [] ________________
 lens = __________ [] ________________
 count = __0__

Outputs: toString() returns _______””_________
 size() returns _______0_________

If it's not obvious, why is this testing a different behavior from the case above?

 Test the case where the string is empty.

Page 8 of 8

Problem 6 (Miscellaneous)

a. Which is the best movie by the Cohen brothers (circle one)?

 The Big Lebowski Fargo

 Burn After Reading No Country for Old Men

b. Which is the most underrated movie by the Cohen brothers (circle one)?

 Burn After Reading The Hudsucker Proxy

 O Brother Where Art Thou The Ballad of Buster Scruggs

c. O Brother Where Art Thou is a retelling of which book?

 The Iliad The Odyssey

 The Epic of Gilgamesh Beowulf

d. The main characters of The Big Lebowski enjoy which of these the most?

 yoga bowling

 debugging singing

Of course, these questions are all fake. The actual test will include a half dozen or
so multiple-choice / short answer questions on the topics from the second half of the
course: equals & hashCode, exceptions, subtypes, generics, event-driven programs,
and design patterns.

