
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2020

JavaScript Overview

UW CSE 331 Winter 2020 1

Why?

• We’re building an application that can find walking
paths on the campus

• We’d like to add a graphical user interface front-end
• Native Java Swing graphics is straightforward, but…
• These days most things are webapps

– So we’re going to build one! 😱
– Which means learning enough JavaScript / React

to draw the map and paths in a browser window
and interact with the user and the back-end
campus map application (your Java program!)

UW CSE 331 Winter 2020 2

JavaScript – our approach

• We’re going to learn just enough to display a map, allow
users to select endpoints, and draw a path
– So we we’ll focus on language basics, particularly key

differences between JavaScript and Java
– If you’ve already done JavaScript hacking this may be

mostly review with (maybe) some new perspective
• But also realize our goal isn’t to exhaustively cover

everything – don’t have time, so core ideas only
• Last two assignments this quarter:

– HW8 draw dots and lines on an image (using JS/React)
– HW9: use HW8 framework as the campus path GUI

UW CSE 331 Winter 2020 3

Resources

• Lectures will (try to) point out key things
• For more: start with Mozilla (MDN) JavaScript tutorial:

– https://developer.mozilla.org/en-US/docs/Web/JavaScript
• CodeAcademy has a good, free JavaScript basics

course
• React has its own dialect of JavaScript (JSX) so we’ll

selectively use its documentation
• Be real careful about web searches – the JavaScript/

webapp ecosystem has way too many somewhat-to-
totally incompatible or current vs. obsolete ways of
doing similar things. Code snippets from the web
may lead you way off.

UW CSE 331 Winter 2020 4

Credits

• CSE 331 project due to Andrew Gies and Avi Bhagat
• Thanks to Lauren Bricker and CSE 154 crew for

recent notes (even if you took 154 recently this stuff
probably will look different)

• Other material from Cay Horstmann’s CSE 151
course at San Jose State

• And from wherever we can find useful things…

• Notes: JS = JavaScript. ECMAScript is the official
standard version (we’re using v6/2015) so you’ll also
see ES or ES6 etc.

UW CSE 331 Winter 2020 5

A little history

In the beginning was the web page
• It was displayed in a browser
• It had links
• But it was static
• There was no way to update or

compute content dynamically or
interact with users

• Solution: add a scripting
language to the browser
– Users (page developers)

should be able to write code
– Code should be able to

interact with the browser’s
data structures to read /
update / modify the page
contents

World Wide Web
The WorldWideWeb (W3) is a wide-area hypermedia
information retrieval initiative aiming to give universal
access to a large universe of documents.
Everything there is online about W3 is linked directly or
indirectly to this document, including an executive
summary of the project, Mailing lists , Policy , November's
W3 news , Frequently Asked Questions .
What's out there? Pointers to the world's online
information, subjects , W3 servers, etc.
Help on the browser you are using
Software Products A list of W3 project components and
their current state. (e.g. Line Mode ,X11 Viola , NeXTStep
, Servers , Tools , Mail robot , Library)
Technical Details of protocols, formats, program internals
etc
Bibliography Paper documentation on W3 and references.
People A list of some people involved in the project.
History A summary of the history of the project.
How can I help ? If you would like to support the web..
Getting code Getting the code by anonymous FTP , etc.

UW CSE 331 Winter 2020 6

http://info.cern.ch/hypertext/WWW/WhatIs.html
http://info.cern.ch/hypertext/WWW/Summary.html
http://info.cern.ch/hypertext/WWW/Administration/Mailing/Overview.html
http://info.cern.ch/hypertext/WWW/Policy.html
http://info.cern.ch/hypertext/WWW/News/9211.html
http://info.cern.ch/hypertext/WWW/FAQ/List.html
http://info.cern.ch/hypertext/DataSources/Top.html
http://info.cern.ch/hypertext/DataSources/bySubject/Overview.html
http://info.cern.ch/hypertext/DataSources/WWW/Servers.html
http://info.cern.ch/hypertext/WWW/Help.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/LineMode/Browser.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/NeXT/WorldWideWeb.html
http://info.cern.ch/hypertext/WWW/Daemon/Overview.html
http://info.cern.ch/hypertext/WWW/Tools/Overview.html
http://info.cern.ch/hypertext/WWW/MailRobot/Overview.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/Technical.html
http://info.cern.ch/hypertext/WWW/Bibliography.html
http://info.cern.ch/hypertext/WWW/People.html
http://info.cern.ch/hypertext/WWW/History.html
http://info.cern.ch/hypertext/WWW/Helping.html
http://info.cern.ch/hypertext/README.html
http://info.cern.ch/hypertext/WWW/LineMode/Defaults/Distribution.html

Enter JavaScript

• Created in 1995 by Brenden Eich as a “scripting
language” for Mozilla’s browser
– Done in 10 days!

• Used to make web pages interactive:
– Dynamic text in HTML
– React to events (page load, user clicks)
– Discover info about local computer
– Do local calculations

• No relation to Java other than trying to piggyback on
all the Java hype at that time

UW CSE 331 Winter 2020 7

Why JavaScript now?

• JavaScript is a web standard & ships in every browser
– But not supported identically by all of them L

• De facto execution engine for dynamic code on web

• We will try to stick to portable, generic stuff
– Some of our libraries depend on a fairly recent version of

Javascript (“ECMAScript 6”), which is supported on current
versions of all major browsers

– But for hw8/hw9 we’re only supporting Chrome (at least this
time around) to avoid cross-platform grief

UW CSE 331 Winter 2020 8

Our plan…

• First, look at basic JavaScript language elements using
Chrome as an execution engine
– And look at how plain JS interacts with ordinary web

pages
• Then…

– The original web model was “pages linked to other
pages”, with some computation in individual pages

– Modern web apps load a single page that serves as a
host for running a full application program

• Something browsers+JS were never designed for
• So…

– There are a huge number of web/JS frameworks to
make this sort of application feasible

• We’ll learn basics of React and use it for our project

UW CSE 331 Winter 2020 9

A first example – embedded JS

• Originally JavaScript code was embedded in web pages. Code
is executed when <script> is encountered as web page loads.
– (all sample code is linked to this lecture on the cse331 web)

<html>
<head>
<title>JS Program embedded in a web page</title>
<script type="text/javascript">

let a = 6
let b = 7
alert(a*b)

</script>
</head>
<body></body>
</html>

embedded.html

UW CSE 331 Winter 2020 10

External JS files

• More commonly, JavaScript
code is stored in separate
files. Sample code file
contents:

let a = 6
let b = 7
alert(a*b)

external.js

• A web page that uses (runs) this
code when the page is loaded:

<html>
<head>
<title>JS Program loaded
from external file</title>
<script src="external.js">
</script>
</head>
<body></body>
</html>

external.html

UW CSE 331 Winter 2020 11

JavaScript console

Every browser has developer tools including the console,
details about web pages and objects, etc.

A JS program can use console.log("message"); to
write a message to the console for debugging, recording, etc.

– “printf debugging” for JavaScript programs

In Chrome, right-click on a web page and select Inspect or
pick View > Developer > Developer Tools from the menu.
Click the console tab and you can see output that’s been
written there, plus you can enter JavaScript expressions and
evaluate them. Super useful for trying things out.

console.html
UW CSE 331 Winter 2020 12

Syntax and variables

• Syntax similar to Java, C, etc.
• /* comments */ or // comments (prefer //)
• Variables are “dynamically typed” (i.e., not fixed by

declaration):
– Introduced into program with let
– Type of a var is whatever was last assigned to it

let x = 42;
x = "ima string now!”;

– Use const for constants: const pi = 3.14159;

• Semicolons are optional at ends of lines and often
omitted, but also encouraged J

UW CSE 331 Winter 2020 13

Values and types

• Primitive values do have types. 5 of them:
– Number (floating-point only), String, Boolean,

Undefined, and Null (actually an object type, but
usually thought of as its own type with literal null)

• Usual numeric operations: + - * / ++ -- +=, etc.
• String concatenation with +
• Lots of methods for strings
• Math library with the expected things

• Variables can also refer to values of object types
(everything else)

UW CSE 331 Winter 2020 14

Control flow –just like Java

• Conditionals

if (condition) {
statements
} else if (condition){
statements
} else {

statements
}

• Loops
while (condition) {
statements
}

for (init; condition; update){
statements
}

– Also for-of and for-in loops
• Be careful with these. They have

“interesting” semantics and
differences that you need to get
right if you use them.

UW CSE 331 Winter 2020 15

Boolean type

• Any value can be used as a Boolean
– “falsey” values: false, 0, NaN, “”, null, undefined
– “truthy” values: everything else (including true !)

• As expected: >, <, <=, >=, &&, ||, !
• Equality ===, !== (strictly equal); ==, != (loosely equal)

– Use ===, !== almost all the time. These check both
types and values.

– == and != can surprise you with conversions
• Try 7=="7" vs 7==="7"

UW CSE 331 Winter 2020 16

Arrays

• Examples
let empty = []
let names = ["bart", "lisa"]
let stuff = ["wookie", 17, false]
stuff[6] = 331 // in-between undefined

• Access elements with subscripts as usual
• Lots of methods – arrays can serve as lists, stacks,

queues, etc.
– length, add, concat, reverse, shift, push, pop, …

UW CSE 331 Winter 2020 17

Functions (& methods!)

• JavaScript has both – like C++
– Methods – called on objects (more later)
– Functions – free-standing things

• Syntax is the same for both
function name (parameters) {
statement
statement
}

– Use return value; statement if function should
compute and yield a value on exit

UW CSE 331 Winter 2020 18

Remember dynamic typing?

• Consider
function average(x, y) {
return (x + y) / 2

}

• No surprise
let result = average(6,7); // 6.5

• But then…
let answer = average("6","7"); // 33.5!

UW CSE 331 Winter 2020 19

Functions are values

• Javascript is a functional language
– Functions can be stored as values of variables,

passed as parameters, and so on
– Lots of powerful techniques (cf CSE 341); we won’t

cover for the most part
• Using the average function from the previous page:

let f = average
let result = f(6, 7) // result is 6.5
f = Math.max
result = f(6,7) // result is 7

UW CSE 331 Winter 2020 20

Arrow functions

• A function can be defined without the function keyword.
Here is a different (but works the same*) way to define
average:

let average = (x, y) => (x + y) / 2
– Idea is that the => arrow separates the parameter list

from the returned value
• => can be used with multi-line functions also – see

tutorials/references for details
– Very useful when we need a “function value” to be

used as an argument to some other function
• We will see more later when we deal with user

interface event handling

*There is a technical difference in how global variables (particularly this) are handled in =>
functions compared to conventional named ones. We’ll need to use => in our React code
because of that.

UW CSE 331 Winter 2020 21

Functions as parameters

• Functions can be passed as parameters just like any
other values

function compute(f) {
return f(2,3);

}
function add(x,y) { return x+y; }
let sub = (x,y) => x-y;
compute(add);
compute(sub);
compute((a,b) => a*b);

UW CSE 331 Winter 2020 22

Objects (1)

• Everything in JavaScript is a mutable object if it’s not
a primitive value (and some immutable values like
strings also have methods)

• A JavaScript object is a set of name/value pairs
(often called “properties”). Example

character = { name: "Lisa Simpson",
age: 30 }

• Once you have an object, you reference properties
with object.property notation:

character.age = 7

UW CSE 331 Winter 2020 23

Objects (2)

• You can add properties
character.instrument = "horn"

• Bracket notation can be used to reference properties
character["instrument"] = "saxophone"

• And properties can be deleted
delete character.age

• Property names can be computed
what = "instrument"
character[what] = "tenor sax"

• See tutorials or references for more variations

UW CSE 331 Winter 2020 24

Objects with methods

• Properties in a JavaScript object can include
methods (functions) – just like in Java

let account = {
owner: "Gandalf",
balance: 10000,
deposit: function(amount) {
this.balance += amount

}
}

• We call methods in the expected way:
account.deposit(100);

UW CSE 331 Winter 2020 26

Objects with methods

• There is a bit of shorthand available. Instead of
let account = {

…
deposit: function(amount) {

this.balance += amount;
}

}
we can write

let account = {
…
deposit(amount) {

this.balance += amount
}

}
but the meaning is exactly the same

UW CSE 331 Winter 2020 27

Creating new objects

• JavaScript has an unconventional model: it is an object-
oriented language, but there are no classes!
– But everything* is an object, including functions(!)

*modulo some technical details and primitive types

• JavaScript’s basic model is that objects are created by
functions that return new objects…
– All objects are related to some other object by their

hidden “prototype” property
– When we look for a property in an object, if it is not

found locally, we look in its prototype object, and if not
found, in that object’s prototype, … until we either find
it or hit the top of the chain

– So we have something that resembles inheritance but
without classes

UW CSE 331 Winter 2020 28

ES6 Classes

• All of this is a bit much, so ES6 added syntax for “classes”
• class Account {

constructor(owner, balance) {
this.owner = owner
this.balance = balance

}
deposit(amount) {

this.balance += amount
}

}
• But underneath there are only objects with prototypes

pointing to other objects
– We’ll ignore the details – see a good JS reference

UW CSE 331 Winter 2020 29

What’s next?

• How JavaScript code interacts with html elements in
a web page

• Then some React basics and how to structure a
JavaScript application for hw8 and hw9

• Don’t miss upcoming lectures and sections!

UW CSE 331 Winter 2020 30

