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Data abstraction outline
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Review: a data abstraction is defined 
by a specification
A collection of procedural abstractions

– Not a collection of procedures

Together, these procedural abstractions provide some set of values
All the ways of directly using that set of values
– Creating
– Manipulating
– Observing

• Creators and producers:  make new values
• Mutators:  change the value (affects equals(…) but not ==)
• Observers:  allow the client to distinguish different values
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ADTs and specifications

• So far, we have only specified ADTs
– Specification makes no reference to the implementation

• Of course, we need [guidelines for how] to implement ADTs

• Of course, we need [guidelines for how] to ensure our 
implementations satisfy our specifications

• Two intellectual tools are really helpful…
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Connecting implementations to specs
Representation Invariant: maps Object → boolean

– An assertion about the object state
– Indicates if an instance is well-formed
– Defines the set of valid concrete values
– Only values in the valid set make sense as implementations of an 

abstract value
– For implementors/debuggers/maintainers of the abstraction: no 

object should ever violate the rep invariant 
• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– What the data structure means as an abstract value
– How the data structure is to be interpreted
– Only defined on objects meeting the rep invariant
– For implementors/debuggers/maintainers of the abstraction: 

Each procedure should meet its spec (abstract values) by “doing the 
right thing” with the concrete representation
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Implementing a Data Abstraction (ADT)

To implement a data abstraction:
– Select the representation of instances, “the rep”

• In Java, typically instances of some class you define
– Implement operations in terms of that rep

Choose a representation so that:
– It is possible to implement required operations
– The most frequently used operations are efficient

• But which will these be?
• Abstraction allows the rep to change later
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Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a new, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: thispost = thispre + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(Character c) {…}

// @return: (c Î this)
public boolean member(Character c) {…}

// @return: cardinality of this
public int size() {…}
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An implementation: Is it right?
class CharSet {
private List<Character> elts = 

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");

Where is the defect?
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Where Is the defect?

• Answer this and you know what to fix

• Perhaps delete is wrong
– Should remove all occurrences?

• Perhaps insert is wrong
– Should not insert a character that is already there?

• How can we know?
– The representation invariant tells us
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The representation invariant

• Defines data structure well-formedness
• Must hold before and after every CharSet operation
• Operations (methods) may depend on it
• Write it like this example:

class CharSet {
// Rep invariant: 
//   elts has no nulls and no duplicates 
private List<Character> elts = …

…
Or, more formally (if you prefer):

∀ indices i of elts . elts.elementAt(i) ≠ null
∀ indices i, j of elts .

i ≠ j Þ ¬ elts.elementAt(i).equals(elts.elementAt(j))
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Now we can locate the error

// Rep invariant:
//   elts has no nulls and no duplicates 

public void insert(Character c) {
elts.add(c);

}

public void delete(Character c) {
elts.remove(c);

}
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Another example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;
…

}

Rep invariants often contain both problem domain and internal 
implementation parts.  For this example:

– Real-world constraints:
• balance ≥ 0
• balance = Σi transactions.get(i).amount

– Implementation-related constraints:
• transactions ≠ null
• No nulls in transactions

UW CSE 331 Winter 2020 12



A rep invariant is a pre/postcondition

• For any public ADT operation (method) the triple
{rep invariant} method body {rep invariant}

should be a valid Hoare triple

• For constructors, the {rep invariant} is the constructor’s 
postcondition, but not part of the precondition
– The constructor establishes the rep invariant for a 

newly created object by initializing it; rep inv doesn’t 
hold until that is done

• Our proof techniques, especially forward reasoning, can 
be helpful to check that the rep invariant is preserved by 
an ADT operation (or established by a constructor)
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Checking rep invariants
Should code check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off

– Some private methods need not check  (Why?)

– Some private methods should not check (Why?)

A great debugging technique:
Design your code to catch bugs by implementing and using rep-
invariant checking
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Checking the rep invariant
Rule of thumb:  check on entry and on exit (why?)

public void delete(Character c) {
checkRep();
elts.remove(c);

// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep();

}
…
/** Verify that elts contains no duplicates. */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {
assert elts.indexOf(elts.elementAt(i)) == i;

}
}
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Practice defensive programming

• Assume that you will make mistakes

• Write and incorporate code designed to catch them when feasible
– On entry:

• Check rep invariant
• Check other preconditions

– On exit:
• Check rep invariant
• Check other postconditions

• Checking the rep invariant helps you discover errors

• Reasoning about the rep invariant helps you avoid errors
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Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this 
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of  getElts preserve the rep invariant?
Kind of, sort of, not really….
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Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always EVIL
– Allows violation of abstraction boundaries and rep invariant
– A big deal, a common bug, you now have a name for it!

• If you do it (should be rare), document how and why
– And feel guilty about it! 
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Avoiding representation exposure

The first step for getting help is to recognize you have a problem J

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs

• Test for it with adversarial clients:
– Pass values to methods and then mutate them
– Mutate values returned from methods
– Check the rep invariant in addition to client behavior
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private is not enough
• Making fields private does not suffice to prevent rep exposure

– Issue is aliasing of mutable data inside and outside the 
abstraction

• private is a hint: be sure you don’t create aliases that let 
clients reference mutable data reachable from private fields
– And be sure to use private to prevent direct access to rep
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Avoiding rep exposure #1: immutability

• Exploit the immutability of (other) ADTs the implementation uses
– Aliasing is no problem if client cannot change data

• Examples (assuming Point is an immutable ADT):
class Line {
private Point start, end;
public Line(Point start, Point end) {
this.start = start;
this.end = end;

}
public Point getStart() {
return this.start;

}
…
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Why [not] immutability?

• Immutability greatly simplifies reasoning
– Aliasing does not matter
– No need to make copies with identical contents
– Rep invariants cannot be broken

• Does require different designs
Suppose Point is immutable but Line is mutable:

void raiseLine(double deltaY) {
this.start = 

new Point(start.x, start.y+deltaY);
this.end = 

new Point(end.x, end.y+deltaY);
}

• Immutable classes in Java libraries include String, 
Character, Integer, …

UW CSE 331 Winter 2020 22



Avoiding rep exposure #2: copying

• Make copies of all data that cross the abstraction barrier
– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {
private Point start, end;
public Line(Point start, Point end) {
this.start = new Point(start.x,start.y);
this.end = new Point(end.x,end.y);

}
public Point getStart() {
return new Point(this.start.x,this.start.y);

}
…
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Shallow copying is not enough

• Example: assume Point and Line are mutable ADTs
class Line {
private Point start;
private Point end;

public Line(Line other) {
this.start = other.start;
this.end = other.end;

}

• Client code:
Line a = ...;
Line b = new Line(a);  // a and b share Points
a.translate(3, 4)
…
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Full deep copy is not always needed

• An immutable ADT must be immutable “all the way down”
– No references reachable to data that may be mutated

• So combining our two ways to avoid rep exposure:
– Must copy-in, copy-out “all the way down” to immutable parts
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Back to getElts

Our initial rep-exposure problem, fixed now with copy-out :

class CharSet {
// Rep invariant: elts has no nulls and no dups
private List<Character> elts = …;

// returns: elts currently in the set
public List<Character> getElts() { 
return new ArrayList<Character>(elts); //copy out!

}
…

}
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Avoiding rep exposure #3: readonly
wrapper (immutable “copy”)

public List<Character> getElts() {
return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList: 
Returns an unmodifiable view of the specified list. This method allows 
modules to provide users with "read-only" access to internal lists. Query 
operations on the returned list "read through" to the specified list, and 
attempts to modify the returned list result in an 
UnsupportedOperationException.
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The good news
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public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep
• So they cannot break the rep invariant

– (For long lists) more efficient than copy out
– Uses standard libraries



The bad news

public List<Character> getElts() {
return new ArrayList<Character>(elts);  //copy out!

}

public List<Character> getElts() {
return Collections.unmodifiableList(elts);

}

The two implementations do not do the same thing!
– Both avoid allowing clients to break the rep invariant
– Both return a list containing the elements

But consider:     xs = s.getElts(); 
s.insert('a'); 
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
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“returns a list containing the elements”

Could mean any of these things:

1. Returns a fresh mutable list containing the elements in the set at 
the time of the call
– likely hard to implement efficiently

2. Returns read-only view that is always up to date with the current 
elements of the set
– Makes it hard to change the rep

3. Returns a list containing the current set elements.  Behavior is 
unspecified if client attempts to mutate the list or to access the list 
after the set’s elements are changed
– Weaker than either #1 or #2
– More complex, harder to use, but sufficient for some purposes

Lesson: a seemingly simple spec may be ambiguous and subtle
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