
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2020

Representation Invariants

UW CSE 331 Winter 2020 1

Data abstraction outline

UW CSE 331 Winter 2020 2

Abstract
data type

Implementation
(e.g., Java class)

Abstraction
barrier

ADT specification ADT implementation

Previous
lecture

Abstraction function (AF):
Relationship between ADT

specification and
implementation

Representation invariant (RI):
Relationship among

implementation fields

Review: a data abstraction is defined
by a specification
A collection of procedural abstractions

– Not a collection of procedures

Together, these procedural abstractions provide some set of values
All the ways of directly using that set of values
– Creating
– Manipulating
– Observing

• Creators and producers: make new values
• Mutators: change the value (affects equals(…) but not ==)
• Observers: allow the client to distinguish different values

3UW CSE 331 Winter 2020

ADTs and specifications

• So far, we have only specified ADTs
– Specification makes no reference to the implementation

• Of course, we need [guidelines for how] to implement ADTs

• Of course, we need [guidelines for how] to ensure our
implementations satisfy our specifications

• Two intellectual tools are really helpful…

UW CSE 331 Winter 2020 4

Connecting implementations to specs
Representation Invariant: maps Object → boolean

– An assertion about the object state
– Indicates if an instance is well-formed
– Defines the set of valid concrete values
– Only values in the valid set make sense as implementations of an

abstract value
– For implementors/debuggers/maintainers of the abstraction: no

object should ever violate the rep invariant
• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– What the data structure means as an abstract value
– How the data structure is to be interpreted
– Only defined on objects meeting the rep invariant
– For implementors/debuggers/maintainers of the abstraction:

Each procedure should meet its spec (abstract values) by “doing the
right thing” with the concrete representation

5UW CSE 331 Winter 2020

Implementing a Data Abstraction (ADT)

To implement a data abstraction:
– Select the representation of instances, “the rep”

• In Java, typically instances of some class you define
– Implement operations in terms of that rep

Choose a representation so that:
– It is possible to implement required operations
– The most frequently used operations are efficient

• But which will these be?
• Abstraction allows the rep to change later

6UW CSE 331 Winter 2020

Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a new, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: thispost = thispre + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(Character c) {…}

// @return: (c Î this)
public boolean member(Character c) {…}

// @return: cardinality of this
public int size() {…}

7UW CSE 331 Winter 2020

An implementation: Is it right?
class CharSet {
private List<Character> elts =

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");

Where is the defect?

UW CSE 331 Winter 2020 8

Where Is the defect?

• Answer this and you know what to fix

• Perhaps delete is wrong
– Should remove all occurrences?

• Perhaps insert is wrong
– Should not insert a character that is already there?

• How can we know?
– The representation invariant tells us

9UW CSE 331 Winter 2020

The representation invariant

• Defines data structure well-formedness
• Must hold before and after every CharSet operation
• Operations (methods) may depend on it
• Write it like this example:

class CharSet {
// Rep invariant:
// elts has no nulls and no duplicates
private List<Character> elts = …

…
Or, more formally (if you prefer):

∀ indices i of elts . elts.elementAt(i) ≠ null
∀ indices i, j of elts .

i ≠ j Þ ¬ elts.elementAt(i).equals(elts.elementAt(j))
10UW CSE 331 Winter 2020

Now we can locate the error

// Rep invariant:
// elts has no nulls and no duplicates

public void insert(Character c) {
elts.add(c);

}

public void delete(Character c) {
elts.remove(c);

}

11UW CSE 331 Winter 2020

Another example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;
…

}

Rep invariants often contain both problem domain and internal
implementation parts. For this example:

– Real-world constraints:
• balance ≥ 0
• balance = Σi transactions.get(i).amount

– Implementation-related constraints:
• transactions ≠ null
• No nulls in transactions

UW CSE 331 Winter 2020 12

A rep invariant is a pre/postcondition

• For any public ADT operation (method) the triple
{rep invariant} method body {rep invariant}

should be a valid Hoare triple

• For constructors, the {rep invariant} is the constructor’s
postcondition, but not part of the precondition
– The constructor establishes the rep invariant for a

newly created object by initializing it; rep inv doesn’t
hold until that is done

• Our proof techniques, especially forward reasoning, can
be helpful to check that the rep invariant is preserved by
an ADT operation (or established by a constructor)

UW CSE 331 Winter 2020 13

Checking rep invariants
Should code check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off

– Some private methods need not check (Why?)

– Some private methods should not check (Why?)

A great debugging technique:
Design your code to catch bugs by implementing and using rep-
invariant checking

14UW CSE 331 Winter 2020

Checking the rep invariant
Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {
checkRep();
elts.remove(c);

// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep();

}
…
/** Verify that elts contains no duplicates. */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {
assert elts.indexOf(elts.elementAt(i)) == i;

}
}

15UW CSE 331 Winter 2020

Practice defensive programming

• Assume that you will make mistakes

• Write and incorporate code designed to catch them when feasible
– On entry:

• Check rep invariant
• Check other preconditions

– On exit:
• Check rep invariant
• Check other postconditions

• Checking the rep invariant helps you discover errors

• Reasoning about the rep invariant helps you avoid errors

16UW CSE 331 Winter 2020

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?
Kind of, sort of, not really….

17UW CSE 331 Winter 2020

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always EVIL
– Allows violation of abstraction boundaries and rep invariant
– A big deal, a common bug, you now have a name for it!

• If you do it (should be rare), document how and why
– And feel guilty about it!

18UW CSE 331 Winter 2020

Avoiding representation exposure

The first step for getting help is to recognize you have a problem J

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs

• Test for it with adversarial clients:
– Pass values to methods and then mutate them
– Mutate values returned from methods
– Check the rep invariant in addition to client behavior

UW CSE 331 Winter 2020 19

private is not enough
• Making fields private does not suffice to prevent rep exposure

– Issue is aliasing of mutable data inside and outside the
abstraction

• private is a hint: be sure you don’t create aliases that let
clients reference mutable data reachable from private fields
– And be sure to use private to prevent direct access to rep

UW CSE 331 Winter 2020 20

Avoiding rep exposure #1: immutability

• Exploit the immutability of (other) ADTs the implementation uses
– Aliasing is no problem if client cannot change data

• Examples (assuming Point is an immutable ADT):
class Line {
private Point start, end;
public Line(Point start, Point end) {
this.start = start;
this.end = end;

}
public Point getStart() {
return this.start;

}
…

UW CSE 331 Winter 2020 21

Why [not] immutability?

• Immutability greatly simplifies reasoning
– Aliasing does not matter
– No need to make copies with identical contents
– Rep invariants cannot be broken

• Does require different designs
Suppose Point is immutable but Line is mutable:

void raiseLine(double deltaY) {
this.start =

new Point(start.x, start.y+deltaY);
this.end =

new Point(end.x, end.y+deltaY);
}

• Immutable classes in Java libraries include String,
Character, Integer, …

UW CSE 331 Winter 2020 22

Avoiding rep exposure #2: copying

• Make copies of all data that cross the abstraction barrier
– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {
private Point start, end;
public Line(Point start, Point end) {
this.start = new Point(start.x,start.y);
this.end = new Point(end.x,end.y);

}
public Point getStart() {
return new Point(this.start.x,this.start.y);

}
…

UW CSE 331 Winter 2020 23

Shallow copying is not enough

• Example: assume Point and Line are mutable ADTs
class Line {
private Point start;
private Point end;

public Line(Line other) {
this.start = other.start;
this.end = other.end;

}

• Client code:
Line a = ...;
Line b = new Line(a); // a and b share Points
a.translate(3, 4)
…

UW CSE 331 Winter 2020 24

Full deep copy is not always needed

• An immutable ADT must be immutable “all the way down”
– No references reachable to data that may be mutated

• So combining our two ways to avoid rep exposure:
– Must copy-in, copy-out “all the way down” to immutable parts

UW CSE 331 Winter 2020 25

Back to getElts

Our initial rep-exposure problem, fixed now with copy-out :

class CharSet {
// Rep invariant: elts has no nulls and no dups
private List<Character> elts = …;

// returns: elts currently in the set
public List<Character> getElts() {
return new ArrayList<Character>(elts); //copy out!

}
…

}

UW CSE 331 Winter 2020 26

Avoiding rep exposure #3: readonly
wrapper (immutable “copy”)

public List<Character> getElts() {
return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList:
Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through" to the specified list, and
attempts to modify the returned list result in an
UnsupportedOperationException.

UW CSE 331 Winter 2020 27

The good news

UW CSE 331 Winter 2020 28

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep
• So they cannot break the rep invariant

– (For long lists) more efficient than copy out
– Uses standard libraries

The bad news

public List<Character> getElts() {
return new ArrayList<Character>(elts); //copy out!

}

public List<Character> getElts() {
return Collections.unmodifiableList(elts);

}

The two implementations do not do the same thing!
– Both avoid allowing clients to break the rep invariant
– Both return a list containing the elements

But consider: xs = s.getElts();
s.insert('a');
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
UW CSE 331 Winter 2020 29

“returns a list containing the elements”

Could mean any of these things:

1. Returns a fresh mutable list containing the elements in the set at
the time of the call
– likely hard to implement efficiently

2. Returns read-only view that is always up to date with the current
elements of the set
– Makes it hard to change the rep

3. Returns a list containing the current set elements. Behavior is
unspecified if client attempts to mutate the list or to access the list
after the set’s elements are changed
– Weaker than either #1 or #2
– More complex, harder to use, but sufficient for some purposes

Lesson: a seemingly simple spec may be ambiguous and subtle

UW CSE 331 Winter 2020 30

