
 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 1 of 12

Remember: For all of the questions involving proofs, assertions, invariants, and so forth,
you should assume that all numeric quantities are unbounded integers (i.e., overflow
cannot happen and there are no fractional parts to numbers) and integer division is
truncating division as in Java, i.e., 5/3 => 1.

Question 1. (5 points) (Forward reasoning) Starting with the given assertion, insert
appropriate assertions in each blank line. You should simplify your final answers if
possible.

 { x > 3 }
 x = x + 1;
 { _x > 4_ }
 y = x * 10;
 { _x > 4 && y = x * 10 }
 x = x - 2;
 { _x > 2 && y = (x+2) * 10 } =>
 { x > 2 && y = 10*x + 20 } =>
 { x > 2 && y > 40 }

The final simplification is useful if we want to know the possible final values for x
and y, although it loses some information about the exact relationship between
them. In fact, we can also assert y>50 based on what we know about the value of x
when y was assigned 10*x.

Question 2. (8 points) (Backward reasoning). Find the weakest precondition for the
sequence of statements below to establish the given postcondition. Write appropriate
assertions in each line and simplify your final answer if possible.

 { (x<y && x!=y-1 && x>-1) || (x>=y && y-1!=x && x>0) } =>

 { (-1 < x < y-1) || x>=y && x>0) }

 if (x < y) {
 { _y != x+1 && x+1 > 0 } => { y != x+1 && x > -1 }
 x = x + 1;
 { _y != x && x > 0 }
 } else {
 { _y-1 != x && x > 0 }
 y = y - 1;
 { _y != x && x > 0 }
 }
 { x != y && x > 0 }

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 2 of 12

Question 3. (16 points) Loops. The following loop finds the two largest distinct values
in an array a that has n elements. Your job is to prove that it works correctly and
establishes the postcondition that is given at the end. According to the precondition, the
array length n is at least 2, there are no duplicate values in the array. Write a suitable
loop invariant and add the necessary assertions to complete the proof. To save writing,
use the notation a[i..j] to refer to the array elements starting with a[i] and ending
with a[j]. Hint: the Java expression b?x:y used below evaluates to x if b is true and
to y if b is false. (It works correctly – you don’t need to prove it.)

{ pre: n ≥ 2 && a has no duplicate elements }
// initialize max and max2nd (you can assume this is correct)
int max = (a[0]<a[1]) ? a[1] : a[0];
int max2nd = (a[0]<a[1]) ? a[0] : a[1];
int k = 2;
{ inv: max is largest in a[0..k-1] and max2nd is 2nd largest in a[0..k-1] }
while(k != n) {
 { inv and k != n }
 if (a[k] > max) {
 { inv and a[k] > max = largest in a[0..k-1] (so max = 2nd largest in a[0..k]
 and a[k] is largest in a[0..k]) }
 max2nd = max;
 { max = max2nd = 2nd largest in a[0..k] and a[k] is largest in a[0..k] }
 max = a[k];
 { max = largest in a[0..k] and max2nd = 2nd largest in a[0..k] }

 } else if (a[k] > max2nd) {
 { inv and max2nd < a[k] < max = largest in a[0..k-1]
 (so a[k] = 2nd largest in a[0..k]) }
 max2nd = a[k];
 { max = largest in a[0..k] and max2nd = 2nd largest in a[0..k] }
 } else {
 // nothing needed
 { inv && a[k] < max2nd } =>
 { max = largest in a[0..k] and max2nd = 2nd largest in a[0..k] }
 } // end if-elseif-else
 { max = largest in a[0..k] and max2nd = 2nd largest in a[0..k] }
 k = k + 1;
 { inv }
} // end loop
{ inv and k=n } =>
{ post: max = largest in a[0..n-1] && max2nd = 2nd largest in a[0..n-1] }

Note: the original problem did not leave a blank line for an assertion between the
end of the if statement and the assignment k=k+1. We added that above for
completeness, but as long as appropriate assertions were written at the end of each
part of the if, a solution received full credit.

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 3 of 12

The next several questions concern the following code, which contains a class that
represents a shopping cart and a second class that represents items that can be added to
the cart. There may be some logic bugs in the code (to be explored later), but it does
compile and execute without any reported errors. There is a second copy of this page at
the end of the exam that you can remove for convenience.

/** A ShoppingCart holds a list of n Items i1, i2, ..., in */
public class ShoppingCart {
 private List<Item> items;
 public ShoppingCart() { items = new ArrayList<Item>(); }
 public void addItem(Item item) {
 items.add(item);
 }
 public void applyDiscount(double scaleFactor) {
 for(Item item : items) {
 item.setPrice(scaleFactor * item.getPrice());
 }
 }

/** An item in a shopping cart */
public class Item {
 private String name;
 private double price;

 public Item(String name, double price) {
 this.name = name;
 this.price = price;
 }

 public String getName() { return this.name; }
 public double getPrice() { return price; }
 public void setPrice(double price) { this.price = price; }

 /** Items are considered equal if they have the same name. */
 @Override
 public boolean equals(Object o) {
 if(!(o instanceof Item)) return false;
 Item other = (Item) o;
 return this.name.equals(other.name);
 }

 /** an attempt at a hashCode for an Item */
 @Override
 public int hashCode() {
 return (31 * Double.hashCode(price)) + name.hashCode();
 }
}

Do not remove this page from the exam, but feel free to tear off the copy of this page at
the end of the exam. Continue with questions about this code on the next page.

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 4 of 12

Question 4. (10 points) As usual, whoever writes these exams doesn’t provide proper
specifications for things. Below, fill in a correct CSE 331-style specification for the
constructor and the applyDiscount method in ShoppingCart. For CSE 331-
specific custom tags, you can write @spec.xyz or just @xyz – whichever you prefer.

 /** Construct a new, empty ShoppingCart
 *
 *
 * @effects make a new empty ShoppingCart
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */
 public ShoppingCart() { ... }

 /** Apply a discount to the Item prices in this ShoppingCart
 *
 * @param scaleFactor Amount to use to adjust each Itme price.
 * Normally would be less than 1.0.
 *
 * @modifies this
 *
 * @effects The price of each item in this is multiplied by
 * scaleFactor
 *
 *
 *
 *
 *
 */
 public void applyDiscount(double scaleFactor) { ... }

Note: This method could have been better named adjustPrice or something
similar since applyDiscount seems to imply that the method should only reduce
an Item’s price. Some solutions had a precondition requiring the scaleFactor
to be positive or strictly between 0.0 and 1.0, and as long as that was reasonable it
received full credit.

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 5 of 12

Question 5. (12 points, 3 each) Testing. Describe four distinct black-box tests that could
be used to verify that the applyDiscount method specified in the previous problem
works properly. Each test description should describe the test input and expected output.
For full credit each test should be different in some significant way from the other tests
(think about boundary conditions and subdomains, etc.). You should not provide JUnit
or other code, just a clear, precise description of each test, and your descriptions should
be a few lines each, at most. If you want to describe a specific Item as part of a test you
can write it with the notation (name, price), i.e., (magicwand, 17.42).

Note: This question should probably have come after problem 7 and should have
said to assume that a getTotal method was available to compute the total value of
a ShoppingCart. Because there are no other obvious ways in the starter code to
observe changes in a ShoppingCart, we gave credit to answers as long as they
described a precise test setup and how that would change the internal state of the
ShoppingCart and/or the Items in it The answers below assume that getTotal
can be used to observe the value of a ShoppingCart. Here are several tests:

Input or test setup: Create an empty ShoppingCart s.
Call s.applyDiscount(0.5).

Expected output: getTotal() returns 0.0.

Input or test setup: Create an empty ShoppingCart s. Call: s.addItem(new
Item(“Apple”, 5.0); s.applyDiscount(1.0).

Expected output: getTotal() returns 5.0.

Input or test setup: Create an empty ShoppingCart s. Call: s.addItem(new
Item(“Apple”, 5.0); s.applyDiscount(0.8).

Expected output: getTotal() returns 4.0.

Input or test setup: Create an empty ShoppingCart s. Call: s.addItem(new
Item(“Apple”, 5.0); s.addItem(new Item(“Apple”, 5.0);
s.applyDiscount(0.8).

Expected output: getTotal() returns 8.0.

Input or test setup: Create an empty ShoppingCart s. Call: s.addItem(new
Item(“Apple”, 5.0); s.applyDiscount(0.8); s.addItem(new
Item(“Banana”, 3.0.

Expected output: getTotal() returns 7.0.

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 6 of 12

Question 6. (6 points, 2 each) We would like to add a getTotal() method to
ShoppingCart that returns the total price of the items in the ShoppingCart. Here
are three possible specifications for this new method.

Spec. A

 /**
 * @return The total price of all items in the shopping cart.
 * @throws IllegalStateException if the shopping cart is empty
 */

Spec. B

 /**
 * @return The total price of all items in the shopping cart.
 * @requires The shopping cart is not empty.
 */

Spec. C

 /**
 * @return The total price of all items in the shopping cart, or $0 if there are none.
 */

Describe the relationship between each pair of specifications by circling the correct
answer below:

a) Spec A is weaker than stronger than incomparable to Spec B

b) Spec A is weaker than stronger than incomparable to Spec C

c) Spec B is weaker than stronger than incomparable to Spec C

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 7 of 12

Question 7. (9 points, 3 each method) Here are three possible implementations of
getTotal() for ShoppingCart. For each implementation, circle all of the names
of the specifications from the previous page that it satisfies (if any).

 public double getTotal1() {
 if(items.isEmpty()) {
 throw new IllegalStateException();
 }
 double total = 0.0;
 for(Item item : items) {
 total += item.getPrice();
 }
 return total;
 }

Satisfies Spec A

Satisfies Spec B

Satisfies Spec C

 public double getTotal2() {
 if(items.isEmpty()) {
 return -1.0;
 }
 double total = 0.0;
 for(Item item : items) {
 total += item.getPrice();
 }
 return total;
 }

Satisfies Spec A

Satisfies Spec B

Satisfies Spec C

 public double getTotal3() {
 double total = 0.0;
 for(Item item : items) {
 total += item.getPrice();
 }
 return total;
 }

Satisfies Spec A

Satisfies Spec B

Satisfies Spec C

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 8 of 12

Question 8. (14 points). We’ve decided to add method getTotal3 from the previous
page to the existing ShoppingCart code, and we’ve written a small program to try it
out. One of our lucky customers is given a discount. Here is the code:

 public static void main(String[] args) {
 ShoppingCart harrysCart = new ShoppingCart();
 ShoppingCart hermoniesCart = new ShoppingCart();
 Item apple = new Item("apple", 5.0);
 Item banana = new Item("banana", 2.5);
 harrysCart.addItem(apple);
 hermoniesCart.addItem(apple);
 hermoniesCart.addItem(banana);
 harrysCart.applyDiscount(0.8);
 /**** HERE!!! ****/
 System.out.println("Harry: " + harrysCart.getTotal3());
 System.out.println("Hermione: " + hermoniesCart.getTotal3());
}

(a) (6 points) Draw a diagram showing the variables and objects as they exist when
execution of main reaches the first println statement (i.e., where the HERE!!!
comment is, right after applyDiscount returns).

Note: Technically the name Strings in Item object are separate objects, so a truly
careful diagram would show that. For this question it’s fine to omit that detail.

(continued on next page)

harrysCart

hermoniesCart

apple

banana

main

…

name apple
price 4.0

items …

items

name banana
price 2.5

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 9 of 12

Question 8. (cont) (b) (2 points) There’s a bug somewhere. In method main, the
discount should only apply to harrysCart (that’s what the client expects), but it
appears to have also affected hermoniesCart too! What output is printed when the
program is executed?

Harry: 4.0
Hermione: 6.5

(c) (3 points) What is the bug? You should assume that the problem is not in the client
code – main should work as written. Describe what went wrong in a couple of
sentences. If this bug has a specific name be sure to include that in your description.

There is a representation exposure bug. If the same Item object is added more
than once to one or more ShoppingCarts, all of the ShoppingCarts share a
reference to the same object. If any ShoppingCart changes the Item, the change
will affect all of the references to it in the ShoppingCart(s).

(d) (3 points) Describe an appropriate way to fix this bug, also briefly.

One simple way is for each ShoppingCart to make a local copy of each Item that
is added so it has its own private copy or copies.

Question 9. (4 points) Class Item contains a hashCode method, but, as the comment
in the code implies, it might not be correct. Does the given method satisfy the
specification for hashCode? If so, give a brief justification for why it does; if not,
describe what’s wrong and how to fix it.

It is not correct. Item.equals only compares Item names when testing for
equality but the provided hashCode method uses both name and price to
compute the hashcode. The fix is easy: Item.hashCode should just return
name.hashCode() as its result.

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 10 of 12

Question 10. (14 points, 2 each) Overloading, overriding, and equals. We’ve found
the following code, which defines classes for 2-D and 3-D points, but doesn’t quite get
equality right – notice that the parameter types in the equals methods look suspicious.
But the code does compile and execute without reporting any errors. Answer questions
about this code on the next page. There is a second copy of this page at the end of the
exam that you can remove for convenience.

/** Point on a 2-D plane with x,y coordinates */
public class Point {
 private int x, y;
 public Point(int x, int y) {
 this.x = x; this.y = y;
 }
 public boolean equals(Point o) {
 if (! (o instanceof Point)) {
 return false;
 }
 Point p = (Point) o;
 return this.x == p.x && this.y == p.y;
 }
}
/** Point on 3-D plane with x,y,z coordinates */
public class Point3d extends Point {
 private int z;
 public Point3d(int x, int y, int z) {
 super(x,y);
 this.z = z;
 }
 public boolean equals(Object o) {
 if (! (o instanceof Point)) {
 return false;
 }
 if (! (o instanceof Point3d)) {
 return super.equals(o);
 }
 Point3d p3 = (Point3d) o;
 return super.equals(p3) && this.z == p3.z;
 }
 public static void main(String[] args) {
 Point pta = new Point(1,2);
 Point ptb = new Point(5,6);
 Point3d p3a = new Point3d(1,2,3);
 Point3d p3b = new Point3d(1,2,4);
 Object o2a = pta;
 Object o3a = p3a;
 Object o3b = p3b;
 ______________________ ; // insert code from questions here
 }
}
Do not remove this page from the exam, but feel free to tear off the copy of this page at
the end of the exam. Continue with questions about this code on the next page.

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 11 of 12

Question 10. (cont.) For each line of code below, indicate what happens if it is inserted
by itself at the end of the main method on the previous page and executed. For each
one, indicate which method is called during execution (Object.equals,
Point.equals, or Point3d.equals) and whether the method call returns true or
false. Circle the correct answers.

(a) pta.equals(ptb);

Class whose equals method is executed: Object Point Point3d

Result: true false

(b) pta.equals(p3a);

Class whose equals method is executed: Object Point Point3d

Result: true false

(c) p3a.equals(pta);

Class whose equals method is executed: Object Point Point3d

Result: true false

(d) p3a.equals(p3b);

Class whose equals method is executed: Object Point Point3d

Result: true false

(e) o3a.equals(p3a);

Class whose equals method is executed: Object Point Point3d

Result: true false

(f) o2a.equals(p3a);

Class whose equals method is executed: Object Point Point3d

Result: true false

(g) o3a.equals(o3b);

Class whose equals method is executed: Object Point Point3d

Result: true false

 CSE 331 19su Midterm Exam 7/22/19 Sample Solution

 Page 12 of 12

Question 11. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

Design and implement a full Java compiler. Be sure to include all necessary libraries
and utility programs for it to be useful.

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 No opinion / don’t care

 None of the above. My answer is ________________________.

