
 CSE 331 Final Exam 6/5/17

 Page 1 of 16

Name __ UW ID# ______________

There are 10 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 26

2. ______ / 10

3. ______ / 6

4. ______ / 6

5. ______ / 10

6. ______ / 8

7. ______ / 6

8. ______ / 10

9. ______ / 8

10. ______ / 10

 CSE 331 Final Exam 6/5/17

 Page 2 of 16

Question 1. (26 points) Testing, specification, debugging, and proof – four questions in
one! Consider the following method, which is supposed to compute the dot product (also
called the scalar product) of two arrays of doubles. The dot product of two vectors
{x1, x2, …, xn} * {y1, y2, …,yn} is the single number x1*y1 + x2*y2 + … + xn*yn.

Please do not remove this page from the exam. You will need to modify and prove this
code in a later part of this question.

 public static double dotprod(double[] x, double[] y) {

 double ans = 0.0;

 int k = 0;

 while (k < x.length) {

 ans = x[k]*y[k];

 k = k + 1;

 }

 return ans;

 }

(continued on next page – do not detach this page from the exam)

 CSE 331 Final Exam 6/5/17

 Page 3 of 16

Question 1. (cont.) (a) (6 points) Ignoring any other possible problems with this method,
the method only works if the two arrays have the same length (same number of
elements). There are several ways we can deal with this issue when we write the
specification for the method. Here is a list of some of the possibilities. Assuming that
this method appears in a public library for anyone to use, you should rank these choices
with 1 being the best choice, 2 being the second-best, etc. Write your numbers in the
blanks provided. If there is a tie (i.e., two choices are equally good or equally bad) you
should give them the same ranking using the same number:

_____ Specify a precondition (@requires) x.length==y.length. Do nothing else.

_____ Specify a precondition (@requires) x.length==y.length. Use an assert
statement to terminate execution if the precondition is not met.

_____ Specify a precondition (@requires) x.length==y.length. Throw an
IllegalArgumentException to terminate execution if the precondition is not met.

_____ Specify that the method will throw (@throws) an
IllegalArgumentException if the two arrays have different lengths.

_____ Specify that the method will throw (@throws) an IndexOutOfBounds exception
if y is shorter than x and may return an incorrect result if x is shorter than y (i.e., excess
elements in one of the vectors might be ignored or might lead to an error).

_____ Do not say anything about the array lengths in the specification since it is implicit
in the definition of dot product that they should be the same.

(b) (2 points) Even if both arrays have the same length, there is (are) bug(s) in this code.
What bug(s) is (are) present? (Very briefly) Hint: if you don’t see any problems right
away, work on other parts of the question, which may reveal the bug.

(continued on next page)

 CSE 331 Final Exam 6/5/17

 Page 4 of 16

Question 1. (cont.) (c) (6 points) Complete the following two JUnit tests for this method.
The first test should execute successfully using the original code for the method, in spite
of any bug(s) you may have identified. The second test should reveal a bug that you have
identified. For this exam question, it’s fine to compare doubles for equality and not
worry about roundoff errors.

 // Does not reveal any bugs
 @Test
 public void test1() {

 }

 // Reveals a bug given in your answer to part(b)
 @Test
 public void test2() {

 }

(d) (12 points) Now go back to the original code at the beginning of this question, fix the
bug(s) you have identified by writing corrections in the code, and then prove that the
resulting method is correct. You will need to provide a suitable loop invariant, plus any
necessary preconditions, postconditions, assertions, and anything else needed to show
that the repaired code works properly. You can omit some trivial assertions and logic
steps to save writing, but your proof should contain all essential details.

 CSE 331 Final Exam 6/5/17

 Page 5 of 16

Question 2. (10 points) A generic question. The code below is from the solution to a
midterm exam problem involving the definition of a Node class that could be used in a
Graph ADT.

We would like to change Node into a generic class, where the type of the node label is a
generic parameter instead of String. We have already filled in part of the solution for
you by adding the generic parameter <E> at the beginning of the Node class (in Bold).

Your job is to make all of the other changes needed to use this generic type instead of
String inside Node, and then to make any changes needed in the enclosing Graph
class and its main method so it successfully creates and uses generic Nodes with
String as the actual type parameter for the Node objects. Do not add any type
parameters to class Graph itself, just to the Node class, and then change code that uses
Node. Write your changes in the code below.

import java.util.*;

public class Graph {

 // inner node class

 private class Node<E> { // change this class to use E

 public final String label;

 public Node (String label) {

 this.label=label;

 }

 @Override

 public boolean equals(Object other) {

 if (! (other instanceof Node))

 return false;

 Node n = (Node)other;

 return this.label.equals(n.label);

 }

 @Override

 public int hashCode() {

 return this.label.hashCode();

 }

 } // end of Node<E>

(Problem continued on next page. Make any further needed changes there.)

 CSE 331 Final Exam 6/5/17

 Page 6 of 16

Question 2. (cont.) Additional code from Graph that uses Node<E>. Make any
necessary changes below.

 // Graph instance variable

 private Set<Node> nodes;

 // constructor

 public Graph() {

 nodes = new HashSet<Node>();

 }

 // methods

 public void addNode(String label) {

 nodes.add(new Node(label));

 }

 public int getNumNodes() {

 return nodes.size();

 }

 public static void main (String[] args) {

 Graph g = new Graph();

 g.addNode("Waffles");

 g.addNode("Pancakes");

 g.addNode("Pancakes");

 g.addNode("Maple Syrup");

 System.out.println(g.getNumNodes());

 }

} // end of Graph

 CSE 331 Final Exam 6/5/17

 Page 7 of 16

The academic year is almost over and it’s time for many people to move to a new place.
We’ve been working with Fly-By-Night Movers to help them with their database for
keeping track of items during moves. The next several questions refer to the following
hierarchy of classes, which describes the household items being moved. The first two
classes show some of the variables and methods that would be included in the final
application. Other details have been omitted to save space.

You can remove this page for reference while working on the following problems.

public class Property {
 String description; // property description
 int weight; // weight
 public String getDescription() { return description; }
 public int getWeight() { return weight; }

 @Override
 public boolean equals(Object o) {
 if (! (o instanceof Property))
 return false;
 Property p = (Property) o;
 return this.description.equals(p.description) &&
 this.weight == p.weight;
 }
 /* */
}

public class Furniture extends Property {
 String color;
 public String getColor() { return color; }

 @Override
 public boolean equals(Object o) {
 if (! (o instanceof Property))
 return false;
 if (! (o instanceof Furniture))
 return super.equals(o);
 Furniture f = (Furniture) o;
 return super.equals(f) && this.color.equals(f.color);
 }
 /* ... */
}

public class Table extends Furniture { /* ... */ }
public class Chair extends Furniture { /* ... */ }
public class Electronics extends Property { /* ... */ }
public class Phone extends Electronics { /* ... */ }
public class Computer extends Electronics { /* ... */ }

 CSE 331 Final Exam 6/5/17

 Page 8 of 16

Question 3. (6 points) Hashcodes. (By popular demand based on your answers to the
last question on the midterm!). Here are six possible hashCode methods for
Property. Your job is to decide which ones are legal (satisfy the contract for
hashCode), and, among the ones that are legal, to rank them from best to worst.

In the blank space to the left of each method, you should put an X if that hashCode is
not appropriate or correct for class Property. For the ones that are legal, you should
write 1 to the left of the best one, 2 next to the next-best one, and so forth. If two
methods are about equally good or bad, you should rank them with the same number (i.e.,
ties might be possible). Use your best judgment – we will be fairly generous with partial
credit when appropriate.

Note: Math.random() returns a real number in the range 0.0-1.0.

_____ (i) int hashCode() { return description.hashCode(); }

_____ (ii) int hashCode() { return 13*description.hashCode(); }

_____ (iii) int hashCode() { return (int)(Math.random()*
 description.hashCode()); }

_____ (iv) int hashCode() { return 17; }

_____ (v) int hashCode() { return weight; }

_____ (vi) int hashCode() { return 13*description.hashCode() +
 weight; }

 CSE 331 Final Exam 6/5/17

 Page 9 of 16

Question 4. (6 points) The Property and Furniture classes above both include
equals methods. Part of the contract for equals is that it should implement an
equivalence relation (i.e., reflexive, symmetric, and transitive). Do these equals
methods implement correct equivalence relations? If your answer is yes, give a brief,
convincing argument why they do. If your answer is no, give a counterexample that
shows why one or both of these fail to implement an equivalence relation.

You should assume that methods and constructors are available to create Property and
Furniture objects with whatever instance variable values you wish to use in your
answer. You do not need to write Java code to create these objects, just argue whether
the equals methods do or don’t implement proper equivalence relations for whatever
object(s) you use in your examples.

 CSE 331 Final Exam 6/5/17

 Page 10 of 16

Continuing with the app that we are developing for Fly-By-Night Movers, we need a
class (ADT) that can store an inventory (list) of items that are being moved from one
location to another. An Inventory stores a collection of <key, value> pairs, where the
key is a string (a unique identifying tag) that identifies a single item in the inventory, and
the associated value is a Property object describing that item. Here is the core part of
the code for that class.

public class Inventory {
 // instance variable
 private Map<String, Property> items; // <tag, property> pairs

 // construct an empty Inventory
 public Inventory() {
 items = new HashMap<String, Property>();
 }

 // add a new property with the given tag to this
 // Inventory. Return null if this tag was not previously
 // used, otherwise return the property previously
 // associated with this tag.
 public Property add(String tag, Property p) {
 return items.put(tag, p);
 }

 // if tag appears as a key in this Inventory, remove
 // the <tag, property> from the inventory and return the
 // associated property; otherwise return null indicating
 // the tag was not found in the inventory
 public Property remove(String tag) {
 return items.remove(tag);
 }

 // return the <id tag, property> pairs in this Inventory
 public Map<String, Property> getItems() {
 return items;
 }

 // return the total weight of everything in this Inventory
 public int totalWeight() {
 int result = 0;
 for (Property p: items.values()) {
 result += p.getWeight();
 }
 return result;
 }
}

(Answer questions about this code on the following pages. You may remove this page
from the exam for reference if you wish.)

 CSE 331 Final Exam 6/5/17

 Page 11 of 16

Question 5. (10 points) Class specification, RI & AF. As always seems to be the case
with CSE 331 exams, code samples often do not have adequate documentation. That’s
true of the Inventory class on the previous page.

(a) (3 points) Give a suitable abstract description for class Inventory as would be
written at the beginning of the JavaDoc comment above the Inventory class heading.

(b) (4 points) Give a suitable Representation Invariant (RI) for this class. (Remember
that the RI should be sufficient to guarantee that the existing code executes successfully.)

(c) (3 points) Give a suitable Abstraction Function (AF) for this class that relates the
representation (and RI) to the abstract value of an Inventory object.

 CSE 331 Final Exam 6/5/17

 Page 12 of 16

Question 6. (8 points) As usual, the methods in class Inventory need better
documentation. Below, complete the JavaDoc comments for the constructor and method
totalWeight from class Inventory. Leave any unneeded parts blank. You should
use your best judgment based on the existing code to decide what to include.
(Implementations omitted to save space – see previous pages for detailed code if needed.)

 /** Construct a new Inventory
 *
 * @param
 *
 *
 * @requires
 *
 *
 * @modifies
 *
 *
 * @effects
 *
 *
 * @throws
 *
 *
 * @returns
 *
 */
 public Inventory() { ... }

 /** Return the total weight of everything in this Inventory
 *
 * @param
 *
 *
 * @requires
 *
 *
 * @modifies
 *
 *
 * @effects
 *
 *
 * @throws
 *
 *
 * @returns
 *
 */
 public int totalWeight() { ... }

 CSE 331 Final Exam 6/5/17

 Page 13 of 16

Question 7. (6 points) Representation exposure. One of the new summer interns, who
has just taken CSE 331 at UW, is convinced that the getItems method in Inventory
creates a representation exposure problem. Is the intern right? If so, give a brief
explanation of the problem and then suggest two (2) distinct ways that the problem could
be solved while still making it possible for clients to retrieve a Map describing the
contents of an Inventory object. If the intern is wrong, give a brief explanation of
why there is no potential representation exposure problem with this method.

 CSE 331 Final Exam 6/5/17

 Page 14 of 16

Question 8. (10 points, 1 each) Generics revisited. Recall that the Property class
hierarchy defines several related Java classes:

class Property
class Furniture extends Property
class Table extends Furniture
class Chair extends Furniture
class Electronics extends Property
class Phone extends Electronics
class Computer extends Electronics

Now suppose we have the following variables:

Object o;
Furniture f; Electronics e;
Chair c; Phone p;

List<? extends Furniture> lef;
List<? extends Phone> lep;
List<? super Chair> lsc;

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR lef.add(c);

OK ERROR lef.add(o);

OK ERROR lsc.add(c);

OK ERROR lsc.add(f);

OK ERROR lep.add(null);

OK ERROR f = lef.get(1);

OK ERROR f = lsc.get(1);

OK ERROR c = lsc.get(1);

OK ERROR c = lef.get(1);

OK ERROR e = lep.get(1);

 CSE 331 Final Exam 6/5/17

 Page 15 of 16

Question 9. (8 points, 2 each) Comparing specifications. Suppose we want to add a
send method to the app we are developing for Fly-By-Night Movers that will send a
Property object to a destination. Here are four possible specifications for send:

S1: @param p – Property to send
 @return true if p was successfully sent to the destination

S2: @param p – Property to send
 @requires p.getWeight() <= 10
 @return true if p was successfully sent to the destination

S3: @param p – Property to send
 @return true if p was successfully sent to the destination
 @throws IllegalArgumentException if p.getWeight() > 10

S4: @param p – Property to send
 @requires p.getWeight() <= 5
 @return true if p was successfully sent to the destination

In the answers below, you do not need to include each specification in the list of ones that
are stronger or equal to itself. Just list other specifications that are stronger or equal.

(a) List all of the specification that are stronger than or equal to S1. _________________

(b) List all of the specification that are stronger than or equal to S2. _________________

(c) List all of the specification that are stronger than or equal to S3. _________________

(d) List all of the specification that are stronger than or equal to S4. _________________

 CSE 331 Final Exam 6/5/17

 Page 16 of 16

Question 10. (10 points, 2 each) One last question: design patterns. Here is are some of
the design patterns we discussed this quarter: Adapter, Builder, Composite, Decorator,
Dependency Injection, Factory method, Factory object, Iterator, Intern, Model-View-
Controller (MVC), Observer, Prototype, Proxy, Singleton

Below are short descriptions of several common design situations, each of which
corresponds to one of the above design patterns. Below each description, write the name
of the design pattern from the list above that most closely corresponds to that description.

(a) In a graphical user interface, when a user clicks a button on the screen, that causes a
method callback to an object that has registered interest in being notified of those events.

(b) In HW8 and HW9, we were able to replace a text-based user interface with a
graphical one without having to modify the core logic that stored the campus map and
computed shortest paths.

(c) In the Swing user interface library, containers like JFrame can contain other
components, some of which are also containers and can contain further subcomponents.
Software dealing with these components can treat the overall collection or the individual
components inside it in uniform ways since they all have similar interfaces and
implement common methods like getWidth or paintComponent.

(d) An application accesses a database by calling methods belonging to a local object.
That object forwards the work via an encrypted communications channel to a remote
object that does the work and returns the results to the local object, which then returns the
results to the application, without the application being aware of the existence of the
remote object.

(e) One optimization that Java’s String class provides is the ability to have several
variables share a single copy of a string value like “hello”, rather than having multiple
copies of the same immutable value stored separately in memory.

Congratulations from the CSE 331 staff!!
Have a great summer and best wishes for the future.

