
CSE 331
Software Design & Implementation

Andrew Gies
Spring 2020

HW9, JSON, Fetch

UW CSE 331 Spring 2020 1

Administrivia

• HW8 due today (Thur. 3/5 @ 11:00pm)

• HW9 due a week later (Thur. 3/12 @ 11:00pm)
– Spec released soon. J
– Plan ahead - this assignment can take a little longer than others.
– Get creative! Lots of cool opportunities.
– Demo opportunity next week

• Any questions?

UW CSE 331 Spring 2020 2

Agenda

• HW9 Overview
• JSON

– Brief overview
– Helps share data between Java and JS.

• Fetch
– How your JS sends requests to the Java server.

UW CSE 331 Spring 2020 3

Homework 9 Overview

• Creating a new web GUI using React
– Display a map and draw paths between two points on the map.
– Works just like your React app in HW8 – but you get to design

it!
– Send requests to your Java server (new) to request building and

path info.

• Creating a Java server as part of your previous HW5-7 code
– Receives requests from the React app to calculate paths/send

data.
– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.

UW CSE 331 Spring 2020 4

The Campus Paths Stack

UW CSE 331 Spring 2020 5

Google Chrome React Server
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your Javascript Code

<canvas>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

“Can I get some data?”

“Here’s some JSON with
your data.”

CampusPaths

*Note: This is not Apache Spark

Any Questions?

UW CSE 331 Spring 2020 6

• Done:
– HW9 Basic Overview

• Up Next:
– JSON
– Fetch

JSON

UW CSE 331 Spring 2020 7

• We have a whole application written in Java so far:
– Reads TSV data, manages a Graph data structure, manages

building information, does Dijkstra’s algorithm.
• We’re writing a whole application in Javascript:

– React web app to create a GUI for your users to interact
with.

• Even if we get them to communicate (discussed later), we need
to make sure they “speak the same language”.
– Javascript and Java store data very differently.

• JSON = JavaScript Object Notation
– Can convert JS Object → String, and String → JS Object
– Bonus: Strings are easy to send inside server

requests/responses.

UW CSE 331 Spring 2020 8

let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of
Washington","location":"Seattle","foun
ded":1861,"mascot":"Dubs
II","isRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)
• This means: if the server sent back a JSON String, it’d be easy to use

the data inside of it – just turn it into a JS Object and read the fields out
of the object.

JSON ↔ JS

JSON ↔ JS

UW CSE 331 Spring 2020 9

public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]

{"Purple", "Gold"};

}

Java Object JSON String

• Use Gson (a library from Google) to
convert between them.

– Tricky (but possible) to go from JSON String
to Java Object, but we don’t need that for
this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo()
String json = gson.toJson(sInfo);

{"name":"U of
Washington","location":"Seattle","foun
ded":1861,"mascot":"Dubs
II","isRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}

JSON – Key Ideas

UW CSE 331 Spring 2020 10

• Use Gson to turn Java objects containing the data into JSON
before we send it back.
– The Java objects don’t have to be simple, like in the

example, Gson can handle complicated structures.
• Easy to turn a JSON string into a Javascript object so we can

use the data (node-fetch can help us with that).

Any Questions?

UW CSE 331 Spring 2020 11

• Done:
– HW9 Basic Overview
– JSON

• Up Next:
– Fetch

Fetch

UW CSE 331 Spring 2020 12

• Used by JS to send requests to servers to ask for info.
– alternative to XmlHttpRequest

• Uses Promises:
– Promises capture the idea of “it’ll be finished later.”
– Asking a server for a response can be slow, so Promises

allow the browser to keep working instead of stopping to wait.
– Getting the data out is a little more complicated.

• Can use async/await syntax to deal with promises.

Creating a Request

UW CSE 331 Spring 2020 13

• Recall from lecture:
– When you type a URL into your browser, it makes a GET

request to that URL, the response to that request is the
website itself (HTML, JS, etc..).

• A ”GET” request says “Hey server, can I get some info
about _____?”

– We’re going to make a request from inside Javascript to ask
for data about paths on campus.

– There are other kinds of requests, but we’re just using GET.
(It’s the default for fetch).

• Each “place” that a request can be sent is called an “endpoint.”
– Your Java server will provide multiple endpoints – one for

each kind of request that your React app might want to make.
• Find a path, get building info, etc...

Creating a Request

UW CSE 331 Spring 2020 14

• Basic request with no extra data: “http://localhost:4567/getSomeData”
– A request to the “/getSomeData” endpoint in the server at “localhost:4567”
– “localhost” just means “on this same computer”
– “:4567” specifies a port number – every computer has multiple ports so

multiple things can be running at a given time.

• Sending extra information in a request is done with a query string:
– Add a “?”, then a list of “key=value” pairs. Each pair is separated by “&“.
– Query string might look like: “?start=CSE&end=KNE”

• Complete request looks like:
http://localhost:4567/findPath?start=CSE&end=KNE

• Sends a “/findPath” request to the server at “localhost:4567”, and
includes two pieces of extra information, named “start” and “end”.

• You don’t need to name your endpoints or query string parameters
anything specific, the above is just an example.

Server Address: http://localhost:4567

Sending the Request

UW CSE 331 Spring 2020 15

let responsePromise = fetch(“http://localhost:4567/findPath?start=CSE&end=KNE”);

• The URL you pass to fetch() can include a query string if you need
to send extra data.

• responsePromise is a Promise object
– Once the Promise “resolves,” it’ll hold whatever is sent back

from the server.
• How do we get the data out of the Promise?

– We can await the promise’s resolution.
– await tells the browser that it can pause the currently-executing

function and go do other things. Once the promise resolves, it’ll
resume where we left off.

– Prevents the browser from freezing while the request is
happening

Getting Useful Data

UW CSE 331 Spring 2020 16

async sendRequest() {
let responsePromise = fetch(“...”);
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is
pause-able”

Will eventually
resolve to an
actual JS object
based on the
JSON string.

Once we have
the data, store it
in a useful place.

Error Checking

UW CSE 331 Spring 2020 17

async sendRequest() {
try {

let response = await fetch(“...”);
if (!response.ok) {

alert(“Error!”);
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert(“Error!”);

}
}

Every response has
a ‘status code’ (404
= Not Found). This
checks for 200 = OK

On a complete
failure (i.e. server
isn’t running) an
error is thrown.

Things to Know
• Can only use the await keyword inside a function declared with

the async keyword.
– async keyword means that a function can be “paused” while

await-ing
• async functions automatically return a Promise that (will

eventually) contain(s) their return value.
– This means that if you need a return value from the function

you declared as async, you’ll need to await the function call.
– But that means that the caller also needs to be async.
– Therefore: generally best to not have useful return values

from async functions (in 331, there are lots of use cases
outside of this course, but can get complicated fast).

– Instead of returning, consider calling setState to store the
result and trigger an update.

UW CSE 331 Spring 2020 18

• Error checking is important.
– If you forget, the error most likely will disappear without

actually causing your program to explode.
– This is BAD! Silent errors can cause tricky bugs.
– Happens because errors don’t bubble outside of promises,

and the async function you’re inside is effectively “inside” a
promise.

– Means that if you don’t catch an exception, it’ll just disappear
as soon as your function ends.

UW CSE 331 Spring 2020 19

More Things to Know

Any Questions?

UW CSE 331 Spring 2020 20

• Done:
– HW9 Basic Overview
– JSON
– Fetch

Wrap-Up

UW CSE 331 Spring 2020 21

• Don’t forget:
– HW8 Due This Week (Thurs 3/5 @ 11:00pm)
– HW9 Due Next Week (Thurs 3/12 @ 11:00pm)

• Use your resources!
– Office Hours
– Links from HW specs
– React Tips & Tricks Handout (See “Resources” page on web)
– Other students (remember academic honesty policies: can’t

share/show/copy code, but discussion is great!)
– Google (carefully, always fully understand code you use)

