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Administrivia

• HW8 due today (Thur. 3/5 @ 11:00pm)

• HW9 due a week later (Thur. 3/12 @ 11:00pm)
– Spec released soon. J
– Plan ahead - this assignment can take a little longer than others.
– Get creative! Lots of cool opportunities.
– Demo opportunity next week

• Any questions?
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Agenda

• HW9 Overview
• JSON

– Brief overview
– Helps share data between Java and JS.

• Fetch
– How your JS sends requests to the Java server.
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Homework 9 Overview

• Creating a new web GUI using React
– Display a map and draw paths between two points on the map.
– Works just like your React app in HW8 – but you get to design 

it!
– Send requests to your Java server (new) to request building and 

path info.

• Creating a Java server as part of your previous HW5-7 code
– Receives requests from the React app to calculate paths/send 

data.
– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.
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The Campus Paths Stack
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Google Chrome React Server
“localhost:3000”

Started with npm start

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

Your React Application

http://localhost:3000

SparkServer

CampusMap

Other pathfinder Code

Your Javascript Code

<canvas>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and 
JS”

“Can I get some data?”

“Here’s some JSON with 
your data.”

CampusPaths

*Note: This is not Apache Spark



Any Questions?
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• Done:
– HW9 Basic Overview

• Up Next:
– JSON
– Fetch



JSON
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• We have a whole application written in Java so far:
– Reads TSV data, manages a Graph data structure, manages 

building information, does Dijkstra’s algorithm.
• We’re writing a whole application in Javascript:

– React web app to create a GUI for your users to interact 
with.

• Even if we get them to communicate (discussed later), we need 
to make sure they “speak the same language”.
– Javascript and Java store data very differently.

• JSON = JavaScript Object Notation
– Can convert JS Object → String, and String → JS Object
– Bonus: Strings are easy to send inside server 

requests/responses.
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let schoolInfo = {

name: "U of Washington",
location: "Seattle",
founded: 1861,
mascot: "Dubs II",
isRainy: true,
website: "www.uw.edu",
colors: ["Purple","Gold"]

}

{"name":"U of 
Washington","location":"Seattle","foun
ded":1861,"mascot":"Dubs 
II","isRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily (we’ll see how later)
• This means: if the server sent back a JSON String, it’d be easy to use 

the data inside of it – just turn it into a JS Object and read the fields out 
of the object.

JSON ↔ JS



JSON ↔ JS
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public class SchoolInfo {

String name = "U of Washington";
String location = "Seattle";
int founded = 1861;
String mascot = "Dubs II";
boolean isRainy = true;
String website = "www.uw.edu";
String[] colors = new String[]      

{"Purple", "Gold"};

}

Java Object JSON String

• Use Gson (a library from Google) to 
convert between them.

– Tricky (but possible) to go from JSON String 
to Java Object, but we don’t need that for 
this assignment.

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo()
String json = gson.toJson(sInfo);

{"name":"U of 
Washington","location":"Seattle","foun
ded":1861,"mascot":"Dubs 
II","isRainy":true,"website":"www.uw.e
du","colors":["Purple","Gold"]}



JSON – Key Ideas
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• Use Gson to turn Java objects containing the data into JSON 
before we send it back.
– The Java objects don’t have to be simple, like in the 

example, Gson can handle complicated structures.
• Easy to turn a JSON string into a Javascript object so we can 

use the data (node-fetch can help us with that).



Any Questions?
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• Done:
– HW9 Basic Overview
– JSON

• Up Next:
– Fetch



Fetch
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• Used by JS to send requests to servers to ask for info.
– alternative to XmlHttpRequest

• Uses Promises:
– Promises capture the idea of “it’ll be finished later.”
– Asking a server for a response can be slow, so Promises 

allow the browser to keep working instead of stopping to wait. 
– Getting the data out is a little more complicated.

• Can use async/await syntax to deal with promises.



Creating a Request
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• Recall from lecture:
– When you type a URL into your browser, it makes a GET 

request to that URL, the response to that request is the 
website itself (HTML, JS, etc..).

• A ”GET” request says “Hey server, can I get some info 
about _____?”

– We’re going to make a request from inside Javascript to ask 
for data about paths on campus.

– There are other kinds of requests, but we’re just using GET. 
(It’s the default for fetch).

• Each “place” that a request can be sent is called an “endpoint.”
– Your Java server will provide multiple endpoints – one for 

each kind of request that your React app might want to make.
• Find a path, get building info, etc...



Creating a Request
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• Basic request with no extra data: “http://localhost:4567/getSomeData”
– A request to the “/getSomeData” endpoint in the server at “localhost:4567”
– “localhost” just means “on this same computer”
– “:4567” specifies a port number – every computer has multiple ports so 

multiple things can be running at a given time.

• Sending extra information in a request is done with a query string:
– Add a “?”, then a list of “key=value” pairs. Each pair is separated by “&“.
– Query string might look like: “?start=CSE&end=KNE”

• Complete request looks like: 
http://localhost:4567/findPath?start=CSE&end=KNE

• Sends a “/findPath” request to the server at “localhost:4567”, and 
includes two pieces of extra information, named “start” and “end”.

• You don’t need to name your endpoints or query string parameters 
anything specific, the above is just an example.

Server Address: http://localhost:4567



Sending the Request
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let responsePromise = fetch(“http://localhost:4567/findPath?start=CSE&end=KNE”);

• The URL you pass to fetch() can include a query string if you need 
to send extra data.

• responsePromise is a Promise object
– Once the Promise “resolves,” it’ll hold whatever is sent back 

from the server.
• How do we get the data out of the Promise?

– We can await the promise’s resolution.
– await tells the browser that it can pause the currently-executing 

function and go do other things. Once the promise resolves, it’ll 
resume where we left off.

– Prevents the browser from freezing while the request is 
happening



Getting Useful Data
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async sendRequest() {
let responsePromise = fetch(“...”);
let response = await responsePromise;
let parsingPromise = response.json();
let parsedObject = await parsingPromise;
this.setState({

importantData: parsedObject
});

}

“This function is 
pause-able”

Will eventually 
resolve to an 
actual JS object 
based on the 
JSON string.

Once we have 
the data, store it 
in a useful place.



Error Checking
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async sendRequest() {
try {

let response = await fetch(“...”);
if (!response.ok) {

alert(“Error!”);
return;

}
let parsed = await response.json();
this.setState({

importantData: parsed
});

} catch (e) {
alert(“Error!”);

}
}

Every response has 
a ‘status code’ (404 
= Not Found). This 
checks for 200 = OK

On a complete 
failure (i.e. server 
isn’t running) an 
error is thrown.



Things to Know
• Can only use the await keyword inside a function declared with 

the async keyword.
– async keyword means that a function can be “paused” while 

await-ing
• async functions automatically return a Promise that (will 

eventually) contain(s) their return value. 
– This means that if you need a return value from the function 

you declared as async, you’ll need to await the function call.
– But that means that the caller also needs to be async.
– Therefore: generally best to not have useful return values 

from async functions (in 331, there are lots of use cases 
outside of this course, but can get complicated fast).

– Instead of returning, consider calling setState to store the 
result and trigger an update.
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• Error checking is important.
– If you forget, the error most likely will disappear without 

actually causing your program to explode.
– This is BAD! Silent errors can cause tricky bugs.
– Happens because errors don’t bubble outside of promises, 

and the async function you’re inside is effectively “inside” a 
promise.

– Means that if you don’t catch an exception, it’ll just disappear 
as soon as your function ends.
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More Things to Know



Any Questions?
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• Done:
– HW9 Basic Overview
– JSON
– Fetch



Wrap-Up
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• Don’t forget:
– HW8 Due This Week (Thurs 3/5 @ 11:00pm)
– HW9 Due Next Week (Thurs 3/12 @ 11:00pm)

• Use your resources!
– Office Hours
– Links from HW specs
– React Tips & Tricks Handout (See “Resources” page on web)
– Other students (remember academic honesty policies: can’t 

share/show/copy code, but discussion is great!)
– Google (carefully, always fully understand code you use)


