
CSE 331
Software Design & Implementation

Spring 2020
Section 6 – HW6, Path-Finding, and Parsing

UW CSE 331 Spring 2020 1

Administrivia

• Done with HW5!

• HW6 due next Wednesday.

• Any questions?

UW CSE 331 Spring 2020 2

Agenda

• Overview of HW6

• Breadth-first search (BFS)

• Parsing a file in comma-separated-values (CSV) format
– Very similar to tab-separated-values (TSV) format in HW6

• Test scripts and the new test driver

UW CSE 331 Spring 2020 3

HW6: The MarvelPaths program

• You were the implementor but now are the client of your
graph ADT!

• MarvelPaths is a command-line program you write to find how two
Marvel characters are connected through comic-book co-
appearances

• Using a large dataset in tab-separated-values (TSV) format
– Each entry is a particular appearance of a character in a comic book

• Dataset processed to initialize the social-network graph

• Main functionality is finding shortest path in this social network

UW CSE 331 Spring 2020 4

Outline of the assignment

0. Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of scripts tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage

UW CSE 331 Spring 2020 5

Outline of the assignment

0. Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of script tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage

UW CSE 331 Spring 2020 6

Breadth-first search

• Breadth-first search (BFS) is an algorithm for path-finding
– Works just as well on directed and undirected graphs
– Often used to discover connectivity in a graph

• Finds a path with the least number of edges
– Recall that a path is a chain of edges, like ⟨a, b〉, ⟨b, c〉, ⟨c, d〉
– Ignores edge labels, so not used for weighted graphs

• Often mentioned alongside depth-first search (DFS)
– BFS looks “wide” whereas DFS looks “deep”
– DFS can’t promise to find the shortest path

UW CSE 331 Spring 2020 7

The BFS algorithm – first take

push start node onto a queue

while queue is not empty:
pop node N off queue
if N is goal node:

return true
else:

for each node O in children of N:
push O onto queue

return false

UW CSE 331 Spring 2020 8

BFS: example on a simple graph

UW CSE 331 Spring 2020 9

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push D Q = [D, D]
pop D Q = [D]
pop D Q = []
return false

A

C D

B

start = A
goal = B

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 10

push start Q = [A]
pop A Q = []
push C Q = [C]
pop C Q = []
push D Q = [D]
pop D Q = []
push A Q = [A]
INFINITE LOOP!

A

C D

B

start = A
goal = B

The BFS algorithm

push start node onto a queue
mark start node as visited

while queue is not empty:
pop node N off queue
if N is goal:

return true
else:

for each node O that is child of N:
if O is not marked visited:

mark node O as visited
push O onto queue

return false

UW CSE 331 Spring 2020 11

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 12

A
B

C D

E

start = A
goal = B

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 13

start = A
goal = B

push start Q = [A]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 14

start = A
goal = B

push start Q = [A]
pop A Q = []

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 15

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 16

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C] A

B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 17

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 18

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 19

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 20

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 21

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 22

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 23

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 24

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]
pop E Q = []

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 25

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]
pop E Q = []

A
B

C D

E

BFS: example on a cyclic graph

UW CSE 331 Spring 2020 26

start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]
pop E Q = []
return false

A
B

C D

E

Your turn!

UW CSE 331 Spring 2020 27

Try running through the BFS algorithm on the
worksheet.

BFS Reminders

• BFS is done on a graph, not inside the graph
– This is why we have you create a MarvelPaths class!

• We will eventually want to allow other kinds of searches to be
done on the graph, so BFS should not be hard-wired into the
core Graph ADT

• Use the debug flag to turn off expensive checkRep for
testing/grading

UW CSE 331 Spring 2020 28

Outline of the assignment

0. Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of script tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage

UW CSE 331 Spring 2020 29

Reading in data

• Datasets are easily organized like a table or spreadsheet.
– Each line is a row (i.e., entry) in the dataset
– Special characters usually separate the columns (i.e., fields) of an entry
– Note: fields can contain spaces

• One common data format: CSV (Comma-Separated Values)
– Columns are separated by commas (‘,’)

• For HW6, we will be using data formatted as TSV (Tab-Separated Values)
– Columns are separated by tabs (‘\t’)

UW CSE 331 Spring 2020 30

Structure of a CSV dataset

• First line of the CSV just names the fields of dataset entries.

• An example dataset in CSV format:

UW CSE 331 Spring 2020 31

name,email
Kevin Zatloukal,kevinz@cs.uw.edu

Hal Perkins,perkins@cs.uw.edu

Mike Ernst,mernst@cs.uw.edu

Zachary Tatlock,ztatlock@cs.uw.edu

Dan Grossman,djg@cs.uw.edu

Parsing datasets

• Since datasets are structured, we can interpret and parse the
dataset programmatically.

• Existing Java libraries already do this! No need to reinvent the
wheel.

• For this class, we will be using the library OpenCSV as a parser.

UW CSE 331 Spring 2020 32

Dataset Parsers

• OpenCSV needs to understand how your columns are structured to
translate to Java code.

• Because rows have fixed columns, Java classes can be used to
represent each row.
– Each column is a field in the Java class.

• This class is known as a JavaBean!

UW CSE 331 Spring 2020 33

What is a JavaBean?

• A JavaBean is any class that…
– has a public, zero-argument constructor
– has several properties, i.e., private fields each with getter and setter

UW CSE 331 Spring 2020 34

Example bean

UW CSE 331 Spring 2020 35

public class UserModel {

private String name;

private String email;

public String getName() { return this.name; }

public void setName(String v) { this.name = v; }

public String getEmail() { return this.email; }

public void setEmail(String v) { this.email = v; }

}

name,email
Kevin Zatloukal,kevinz@cs.uw.edu
Hal Perkins,perkins@cs.uw.edu
Mike Ernst,mernst@cs.uw.edu
Zachary Tatlock,ztatlock@cs.uw.edu

public class UserModel {

@CsvBindByName
private String name;

@CsvBindByName
private String email;

public String getName() { return this.name; }

public void setName(String v) { this.name = v; }

public String getEmail() { return this.email; }

public void setEmail(String v) { this.email = v; }

}

Example bean (OpenCSV)

UW CSE 331 Spring 2020 36

name,email
Kevin Zatloukal,kevinz@cs.uw.edu
Hal Perkins,perkins@cs.uw.edu
Mike Ernst,mernst@cs.uw.edu
Zachary Tatlock,ztatlock@cs.uw.edu

public class UserModel {

@CsvBindByName
private String name;

@CsvBindByName
private String email;

public String getName() { return this.name; }

public void setName(String v) { this.name = v; }

public String getEmail() { return this.email; }

public void setEmail(String v) { this.email = v; }

}

Example bean (OpenCSV)

UW CSE 331 Spring 2020 37

name,email
Kevin Zatloukal,kevinz@cs.uw.edu
Hal Perkins,perkins@cs.uw.edu
Mike Ernst,mernst@cs.uw.edu
Zachary Tatlock,ztatlock@cs.uw.edu

Helps OpenCSV identify
field names that match

data column names

From dataset to beans via OpenCSV

• OpenCSV converts each entry into an object of a chosen JavaBean
class

• Returns an iterator to loop through each row of CSV!

UW CSE 331 Spring 2020 38

// see hw spec for details on getting the BufferedReader
Reader reader = new BufferedReader(...);

Iterator<UserModel> csvUserIterator =

new CsvToBeanBuilder<UserModel>(reader) // set input
.withType(UserModel.class) // set entry type
.withSeparator(',’) // , for CSV
.withIgnoreLeadingWhiteSpace(true)
.build() // returns a CsvToBean<UserModel>
.iterator();

Demo

UW CSE 331 Spring 2020 39

A quick walkthrough of the parser code for HW6.

Outline of the assignment

0. Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of script tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage

UW CSE 331 Spring 2020 40

Script testing in HW6

• Same test-script mechanism from HW5, but 2 new commands!
– New command LoadGraph to read and initialize graph from TSV
– New command FindPath to find shortest path in graph using BFS

• Must write the test driver (MarvelTestDriver) yourself
– But you can copy/inherit most of it from GraphTestDriver in HW5

UW CSE 331 Spring 2020 41

Command (in foo.test) Output (in foo.expected)
LoadGraph name file.tsv loaded graph name

FindPath graph node1 noden

path from node1 to noden:
node1 to node2 via edge1,2
node2 to node3 via edge2,3
...
noden-1 to noden via edgen-1,n

... ...

LoadGraph and FindPath

• LoadGraph creates a new graph variable, much like CreateGraph
– LoadGraph populates a graph with nodes and edges from dataset
– Note: Other script commands (e.g., AddNode, AddEdge) can still

mutate the graph once it has been loaded!

• FindPath breaks ties by lexicographic (alphabetic) order
– Necessary when there are multiple shortest paths so the test output will

be deterministic
– Sorting should not be implemented in your Graph ADT.

Lexicographic order should be done in BFS algorithm.

• All this specified in detail on the homework’s webpage
– You will need to read it to get things right :-)

UW CSE 331 Spring 2020 42

Demo

UW CSE 331 Spring 2020 43

A quick walkthrough of the TestDriver code for HW6.

HW6 notes

• Read the assignment spec carefully!
– Ensure that you are using the right file path in the right place to

read the data file
• Most common reason for failures during grading is incorrect

file paths

• Helpful to test and debug using smaller datasets
– Faster and easier to understand what’s going on

• To run MarvelPaths or any program that does console I/O, use
gradlew to run the desired gradle target using the IntelliJ terminal
window (console I/O doesn’t work right otherwise 🐞)

• When you are done, you will be able to find the shortest path from
your command line!

UW CSE 331 Spring 2020 44

