
CSE 331
Software Design & Implementation

Spring 2020
Section 6 – HW6, Path-Finding, and Parsing
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Administrivia

• Done with HW5!

• HW6 due next Wednesday.

• Any questions?
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Agenda

• Overview of HW6

• Breadth-first search (BFS)

• Parsing a file in comma-separated-values (CSV) format
– Very similar to tab-separated-values (TSV) format in HW6

• Test scripts and the new test driver
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HW6: The MarvelPaths program

• You were the implementor but now are the client of your 
graph ADT!

• MarvelPaths is a command-line program you write to find how two 
Marvel characters are connected through comic-book co-
appearances

• Using a large dataset in tab-separated-values (TSV) format
– Each entry is a particular appearance of a character in a comic book

• Dataset processed to initialize the social-network graph

• Main functionality is finding shortest path in this social network
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Outline of the assignment

0.  Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of scripts tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage
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Breadth-first search

• Breadth-first search (BFS) is an algorithm for path-finding
– Works just as well on directed and undirected graphs
– Often used to discover connectivity in a graph

• Finds a path with the least number of edges
– Recall that a path is a chain of edges, like ⟨a, b〉, ⟨b, c〉, ⟨c, d〉
– Ignores edge labels, so not used for weighted graphs

• Often mentioned alongside depth-first search (DFS)
– BFS looks “wide” whereas DFS looks “deep”
– DFS can’t promise to find the shortest path
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The BFS algorithm – first take

push start node onto a queue

while queue is not empty:
pop node N off queue
if N is goal node:

return true
else:

for each node O in children of N:
push O onto queue

return false
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BFS: example on a simple graph
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push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push D Q = [D, D]
pop D Q = [D]
pop D Q = []
return false

A

C D

B

start = A
goal = B



BFS: example on a cyclic graph
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push start Q = [A]
pop A Q = []
push C Q = [C]
pop C Q = []
push D Q = [D]
pop D Q = []
push A Q = [A]
INFINITE LOOP!

A

C D

B

start = A
goal = B



The BFS algorithm

push start node onto a queue
mark start node as visited

while queue is not empty:
pop node N off queue
if N is goal:

return true
else:

for each node O that is child of N:
if O is not marked visited:

mark node O as visited
push O onto queue

return false
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BFS: example on a cyclic graph
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A
B

C D

E

start = A
goal = B



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]

A
B

C D

E



BFS: example on a cyclic graph

UW CSE 331 Spring 2020 14

start = A
goal = B

push start Q = [A]
pop A Q = []

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C] A

B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]
pop E Q = []

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]
pop E Q = []

A
B

C D

E



BFS: example on a cyclic graph
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start = A
goal = B

push start Q = [A]
pop A Q = []
push C Q = [C]
push D Q = [D, C]
pop C Q = [D]
push E Q = [E, D]
pop D Q = [E]
pop E Q = []
return false

A
B

C D

E



Your turn!
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Try running through the BFS algorithm on the 
worksheet. 



BFS Reminders

• BFS is done on a graph, not inside the graph
– This is why we have you create a MarvelPaths class!

• We will eventually want to allow other kinds of searches to be 
done on the graph, so BFS should not be hard-wired into the 
core Graph ADT

• Use the debug flag to turn off expensive checkRep for 
testing/grading
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Outline of the assignment

0.  Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of script tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage
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Reading in data

• Datasets are easily organized like a table or spreadsheet.
– Each line is a row (i.e., entry) in the dataset
– Special characters usually separate the columns (i.e., fields) of an entry 
– Note: fields can contain spaces

• One common data format: CSV (Comma-Separated Values)
– Columns are separated by commas (‘,’)

• For HW6, we will be using data formatted as TSV (Tab-Separated Values)
– Columns are separated by tabs (‘\t’)
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Structure of a CSV dataset

• First line of the CSV just names the fields of dataset entries.

• An example dataset in CSV format:
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name,email
Kevin Zatloukal,kevinz@cs.uw.edu

Hal Perkins,perkins@cs.uw.edu

Mike Ernst,mernst@cs.uw.edu

Zachary Tatlock,ztatlock@cs.uw.edu

Dan Grossman,djg@cs.uw.edu



Parsing datasets

• Since datasets are structured, we can interpret and parse the 
dataset programmatically.

• Existing Java libraries already do this! No need to reinvent the 
wheel.

• For this class, we will be using the library OpenCSV as a parser.
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Dataset Parsers

• OpenCSV needs to understand how your columns are structured to 
translate to Java code.

• Because rows have fixed columns, Java classes can be used to 
represent each row.
– Each column is a field in the Java class.

• This class is known as a JavaBean!
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What is a JavaBean?

• A JavaBean is any class that…
– has a public, zero-argument constructor
– has several properties, i.e., private fields each with getter and setter
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Example bean
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public class UserModel {

private String name;

private String email;

public String getName() { return this.name; }

public void setName(String v) { this.name = v; }

public String getEmail() { return this.email; }

public void setEmail(String v) { this.email = v; }

}

name,email
Kevin Zatloukal,kevinz@cs.uw.edu
Hal Perkins,perkins@cs.uw.edu
Mike Ernst,mernst@cs.uw.edu
Zachary Tatlock,ztatlock@cs.uw.edu



public class UserModel {

@CsvBindByName
private String name;

@CsvBindByName
private String email;

public String getName() { return this.name; }

public void setName(String v) { this.name = v; }

public String getEmail() { return this.email; }

public void setEmail(String v) { this.email = v; }

}

Example bean (OpenCSV)
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name,email
Kevin Zatloukal,kevinz@cs.uw.edu
Hal Perkins,perkins@cs.uw.edu
Mike Ernst,mernst@cs.uw.edu
Zachary Tatlock,ztatlock@cs.uw.edu



public class UserModel {

@CsvBindByName
private String name;

@CsvBindByName
private String email;

public String getName() { return this.name; }

public void setName(String v) { this.name = v; }

public String getEmail() { return this.email; }

public void setEmail(String v) { this.email = v; }

}

Example bean (OpenCSV)
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name,email
Kevin Zatloukal,kevinz@cs.uw.edu
Hal Perkins,perkins@cs.uw.edu
Mike Ernst,mernst@cs.uw.edu
Zachary Tatlock,ztatlock@cs.uw.edu

Helps OpenCSV identify 
field names that match 

data column names



From dataset to beans via OpenCSV

• OpenCSV converts each entry into an object of a chosen JavaBean 
class

• Returns an iterator to loop through each row of CSV!
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// see hw spec for details on getting the BufferedReader
Reader reader = new BufferedReader(...);

Iterator<UserModel> csvUserIterator = 

new CsvToBeanBuilder<UserModel>(reader) // set input
.withType(UserModel.class) // set entry type
.withSeparator(',’) // , for CSV
.withIgnoreLeadingWhiteSpace(true)
.build() // returns a CsvToBean<UserModel>
.iterator();



Demo
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A quick walkthrough of the parser code for HW6.



Outline of the assignment

0.  Understand the dataset (marvel.tsv) and TSV format

1. Complete MarvelParser class to read TSV-formatted files

2. Implement graph initialization in MarvelPaths class

3. Implement path-finding via BFS in MarvelPaths class

4. Write suites of script tests and of implementation tests
• Implement MarvelTestDriver for new test-script commands

5. Write main method in MarvelPaths for command-line usage
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Script testing in HW6

• Same test-script mechanism from HW5, but 2 new commands!
– New command LoadGraph to read and initialize graph from TSV
– New command FindPath to find shortest path in graph using BFS

• Must write the test driver (MarvelTestDriver) yourself
– But you can copy/inherit most of it from GraphTestDriver in HW5
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Command (in foo.test) Output (in foo.expected)
LoadGraph name file.tsv loaded graph name

FindPath graph node1 noden

path from node1 to noden:
node1 to node2 via edge1,2
node2 to node3 via edge2,3
...
noden-1 to noden via edgen-1,n

... ...



LoadGraph and FindPath

• LoadGraph creates a new graph variable, much like CreateGraph
– LoadGraph populates a graph with nodes and edges from dataset
– Note: Other script commands (e.g., AddNode, AddEdge) can still 

mutate the graph once it has been loaded!

• FindPath breaks ties by lexicographic (alphabetic) order
– Necessary when there are multiple shortest paths so the test output will 

be deterministic
– Sorting should not be implemented in your Graph ADT. 

Lexicographic order should be done in BFS algorithm.

• All this specified in detail on the homework’s webpage
– You will need to read it to get things right :-)
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Demo
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A quick walkthrough of the TestDriver code for HW6.



HW6 notes

• Read the assignment spec carefully!
– Ensure that you are using the right file path in the right place to 

read the data file
• Most common reason for failures during grading is incorrect 

file paths

• Helpful to test and debug using smaller datasets
– Faster and easier to understand what’s going on

• To run MarvelPaths or any program that does console I/O, use 
gradlew to run the desired gradle target using the IntelliJ terminal 
window (console I/O doesn’t work right otherwise 🐞)

• When you are done, you will be able to find the shortest path from 
your command line!
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