Administrivia

• HW1 due next Monday.

• Any questions before we dive in?
 – What are the most interesting/confusing/puzzling things so far in the course?
Agenda

• Introductions?

• Review logical reasoning about code with Hoare Logic

• Practice both forward and backward modes
 – Just assignment, conditional ("if-then-else"), and sequence
 – Logical rules from yesterday’s lecture/notes

• Review logical strength of assertions (weaker vs. stronger)

• Practice determining stronger/weaker assertions
Why reason about code?

- Prove that code is correct
- Understand why code is correct
- Diagnose why/how code is not correct
- Specify code behavior
Logical reasoning about code

- Determine facts that hold of program state between statements
 - “Fact” ~ assertion (logical formula over program state, informally “value(s) of some/all program variables)
 - Driven by assumption (precondition) or goal (postcondition)

- Forward reasoning
 - What facts follow from initial assumptions?
 - Go from precondition to postcondition

- Backward reasoning
 - What facts need to be true to reach a goal?
 - Go from postcondition to precondition
Hoare Logic: Validity by Reasoning

• Checking validity of \(\{ P \} S \{ Q \} \)
 – Valid iff, starting from any state satisfying \(P \), executing \(S \) results in a state satisfying \(Q \)

• Forward reasoning:
 – Reason from \(P \) to strongest postcondition \(\{ P \} S \{ R \} \)
 – Check that \(R \) implies \(Q \) (i.e., \(Q \) is weaker)

• Backward reasoning:
 – Reason from \(Q \) to get weakest precondition \(\{ R \} S \{ Q \} \)
 – Check that \(P \) implies \(R \) (i.e., \(P \) is stronger)
Implication (=>)

- Logic formulas with *and* (&, &&, or ∧), *or* (|, ||, or ∨) and *not* (! or ¬) have the same meaning they do in programs.

- Implication might be a bit new, but the basic idea is pretty simple. Implication p=>q is true as long as q is always true whenever p is true.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p => q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Assignment Statements

• Reasoning about \(x = y \);

• Forward reasoning:
 – add “\(x = y \)” as a new fact
 – (also rewrite any existing references to “\(x \)” to use new value)

• Backward reasoning:
 – replace all instances of “\(x \)” in the postcondition with “\(y \)”
Conditionals, more closely

Forward reasoning

\{P\}
if (b)
 \{P \land b\}
 S_1
 \{Q_1\}
else
 \{P \land \neg b\}
 S_2
 \{Q_2\}
\{Q_1 \lor Q_2\}

Backward reasoning

\{ (b \land P_1) \lor (\neg b \land P_2) \}
if (b)
 \{P_1\}
 S_1
 \{Q\}
else
 \{P_2\}
 S_2
 \{Q\}
\{Q\}
Weaker vs. stronger

Formal definition:
• If $P \Rightarrow Q$, then
 – Q is weaker than P
 – P is stronger than Q

Intuitive definition:
• “Weak” means unrestrictive; a weaker assertion has a larger set of possible program states (e.g., $x \neq 0$)
• “Strong” means restrictive; a stronger assertion has a smaller set of possible program states (e.g., $x = 1$ or $x > 0$ are both stronger than $x \neq 0$).
Worksheet

• Take ~10 minutes to get where you can

• Find a partner and work with them

• Let me know if you feel stuck

• We’ll walk through some solutions afterwards
Worksheet – problem 2

```plaintext
{ true } 
if (x>0) {
    { x > 0 }
y = 2*x;
    { x > 0 ∧ y = 2x }
} else {
    { x <= 0 }
y = -2*x;
    { x <= 0 ∧ y = -2x }
}

{ (x > 0 ∧ y = 2x) ∨ (x <= 0 ∧ y = -2x) } 
⇒ { y = 2|x| }
```
Worksheet – problem 4

\{ y > 15 \lor (y \leq 5 \land y + z > 17) \}

if (y > 5) {
 \{ y > 15 \}
 x = y + 2
 \{ x > 17 \}
} else {
 \{ y + z > 17 \}
 x = y + z;
 \{ x > 17 \}
}
\{ x > 17 \}
Worksheet – problem 6 (forward)

{ true }
if (x < y) {
 { true ∧ x < y }
 m = x;
 { x < y ∧ m = x }
} else {
 { true ∧ x >= y }
 m = y;
 { x >= y ∧ m = y }
}

{ (x < y ∧ m = x) ∨ (x >= y ∧ m = y) }
⇒ { m = min(x, y) }
Worksheet – problem 6 (backward)

{ true } ⇔
{ (x <= y ∧ x < y) ∨ (y <= x ∧ x >= y) }

if (x < y) {
 { x = min(x, y) } ⇔ { x <= y }
 m = x;
 { m = min(x, y) }
} else {
 { y = min(x, y) } ⇔ { x >= y }
 m = y;
 { m = min(x, y) }
}

{ m = min(x, y) }
Worksheet – problem 7

{ \(y > 23 \) } \quad \{ \(y \geq 23 \) }

{ \(y = 23 \) } \quad \{ \(y \geq 23 \) }

{ \(y < 0.23 \) } \quad \{ \(y < 0.00023 \) }

{ \(x = y \ast z \) } \quad \{ \(y = x \div z \) }

{ is_prime(y) } \quad \{ is_odd(y) \}
Worksheet – problem 7

{ y > 23 } is stronger than { y >= 23 }

{ y = 23 }

{ y < 0.23 }

{ y < 0.00023 }

{ x = y * z }

{ y = x / z }

{ is_prime(y) }

{ is_odd(y) }
Worksheet – problem 7

{ \ y > 23 \ } \quad \text{is stronger than} \quad \{ \ y \geq 23 \ \}

{ \ y = 23 \ } \quad \text{is stronger than} \quad \{ \ y \geq 23 \ \}

{ \ y < 0.23 \ } \quad \quad \quad \{ \ y < 0.00023 \ \}

{ \ x = y \times z \ } \quad \quad \quad \{ \ y = x / z \ \}

{ \text{is_prime}(y) \ } \quad \quad \quad \{ \text{is_odd}(y) \ \}
Worksheet – problem 7

\{ y > 23 \} \quad \text{is stronger than} \quad \{ y \geq 23 \}

\{ y = 23 \} \quad \text{is stronger than} \quad \{ y \geq 23 \}

\{ y < 0.23 \} \quad \text{is weaker than} \quad \{ y < 0.00023 \}

\{ x = y \times z \} \quad \{ y = x \div z \}

\{ \text{is_prime}(y) \} \quad \{ \text{is_odd}(y) \}
Worksheet – problem 7

\{ y > 23 \} \quad \text{is stronger than} \quad \{ y \geq 23 \}

\{ y = 23 \} \quad \text{is stronger than} \quad \{ y \geq 23 \}

\{ y < 0.23 \} \quad \text{is weaker than} \quad \{ y < 0.00023 \}

\{ x = y \times z \} \quad \text{is incomparable with} \quad \{ y = x / z \}

\{ \text{is_prime}(y) \} \quad \{ \text{is_odd}(y) \}
Worksheet – problem 7

\{ y > 23 \} is stronger than \{ y \geq 23 \}

\{ y = 23 \} is stronger than \{ y \geq 23 \}

\{ y < 0.23 \} is weaker than \{ y < 0.00023 \}

\{ x = y * z \} is incomparable with \{ y = x / z \}

\{ is_prime(y) \} is incomparable with \{ is_odd(y) \}
Questions?

• What is the most surprising thing about this?

• What is the most confusing thing?

• What will need a bit more thinking to digest?