
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Servers

CSE 331 Spring 2020 1



Event-driven programming

An event-driven program is designed to wait for events:
– program initializes then enters the event loop
– abstractly:

do {
e = getNextEvent();
process event e;

} while (e != quit);

2CSE 331 Spring 2020



Server Programming

• Servers sit around waiting for events like:
– new client connections
– new data from the client (high scale servers)

• Simple version (normal scale):

while (true) {
wait for a client to connect
process the request; send a response back

}

– probably want to use a new thread for processing
– high scale web servers might look quite different

3CSE 331 Spring 2020



Example: Chat Server

ChatServer.java

4CSE 331 Spring 2020



Server Sockets & Ports

• Server creates a “server socket” and waits for a connection
– each connection comes with an individual socket
– allows reading from / writing to that client

• Servers on the same machine distinguished by a port number
– numbers below 1024 require admin privileges

ServerSocket ssock = new ServerSocket(80);

• Clients indicate the port when trying to connect:

Socket sock = new Socket(“attu”, 80);

5CSE 331 Spring 2020



Ports & Protocols

• Sockets API allows reading & writing of byte data
– like the File API

• Each server can define its own protocol for communication
– the language it uses to speak to clients

• By convention, ports are associated with particular protocols
– 80 = HTTP
– 443 = HTTPS
– 25 = SMTP relay
– …

• Client that wants to talk HTTP can try connecting to 80
6CSE 331 Spring 2020



Protocols

• HTTP (Hyper-Text Transfer Protocol) is the most important
– initially created for retrieving HTML documents
– simple, text-based protocol

• Trend moving away from new protocols toward re-use of HTTP
– Google (2010s) used HTTP for almost everything

• Allows for re-use of libraries for creating HTTP servers…
– use of libraries reduces bugs, saves time, etc.
– do not write your own HTTP server

7CSE 331 Spring 2020



HTTP



HTTP Request 1

GET /index.html HTTP/1.1

• Request ends with a blank line

• Between GET and blank are optional headers of the form

Name: Value

– similar to Java properties files
– common example would be User-Agent to describe client

CSE 331 Spring 2020 9



HTTP Response 1

HTTP/1.1 200 OK
content-length: 5678

content-type: text/html; charset=UTF-8
Date: Wed, 27 May 2020 18:30:00 GMT
Connection: close

<html>

…

• 200 status code indicates successful
• 400s for error that is the client’s fault
• 500s for errors on the server’s end

CSE 331 Spring 2020 10



Demo

(command-line HTTP request)

11CSE 331 Spring 2020



HTTP Request 2

POST /register HTTP/1.1
content-type: application/x-www-form-urlencoded

content-length: 25

fname=Kevin&userid=kevinz

• POST request includes client content

• 25 bytes of content after the blank line
– newlines are just another byte

CSE 331 Spring 2020 12



HTTP

• GET & POST requests are by far the most common
– other types like DELETE also exist

• See CSE 333 for a more complete discussion
– (no need to memorize the details here)

CSE 331 Spring 2020 13



Uniform Resource Locators (URLs)

• Tells the browser what to get and how to get it

http://attu:8080/index.html

Connect to server attu on port 8080

Send GET request

GET /index.html HTTP/1.1
…

CSE 331 Spring 2020 14



Uniform Resource Locators (URLs)

• Port is optional (default is 80 for HTTP)

• Optional “?a=b&c=d” part of path is called query string
– useful for passing arguments to the server-side code…

• Fragment is only kept in the browser
– client can use this to record its place in the document
– allows back/forward buttons to work on a single page

CSE 331 Spring 2020 15

http://attu:8080/cse331/test?a=b&c=d#fragment

protocol host port path



HTTP SERVERS



Server Frameworks

• How do we write a modular HTTP server?
– need to split up the code into multiple classes

• Usual technique is to route requests using the path
– use path to choose class that handles the request
– used in Java, C++, Python, JavaScript, …

CSE 331 Spring 2020 17



Spark Java

• Simple library for writing HTTP servers in Java
– not to be confused with “Apache Spark” — very different!

• Give the library paths and corresponding classes
– latter are called “routes” in this library
– server will read the request path and invoke appropriate class

• info about the request passed in request object
• response can be written to response object or returned

• Library handles the event loop

CSE 331 Spring 2020 18



Spark Java

Spark.get(“/path”, new MyRoute());

• GET request with this path are sent to this object

• Second argument must implement Route interface
– single required method handle(Request, Response)
– that means it can also be implemented with a Lambda

Spark.get(“/ready”, (request, response) -> {
return “Nah, I’m busy”;

});

CSE 331 Spring 2020 19



Example: Hello Server

HelloServer.java

20CSE 331 Spring 2020



Example: To-Do Server

• Stores a To-Do list

• Clients can retrieve the current list

• Clients can update the list
– check off an item
– add a new item

CSE 331 Spring 2020 21



Example: To-Do Server

ToDoServer.java

22CSE 331 Spring 2020



Spark Java

• Many more features
– simple things are simple
– complex things are possible

• Simple version is single threaded
– makes life much easier
– medium scale would use threads
– high scale would not use them (see lecture 16)

• Documentation at http://sparkjava.com/documentation

CSE 331 Spring 2020 23

http://sparkjava.com/documentation


HTTP CLIENTS



Client / Server communication

• Original JavaScript API: XmlHttpRequest

• Create object call open to configure
– pass in GET / POST, path, and async = true

• Listen for response event
– onload invoked when done

• responseText contains the response body string

• Call send to start the request
– for a POST, pass in the request body
– for GET, pass null

CSE 331 Spring 2020 25



Example: To-Do Client

HelloApp.tsx

26CSE 331 Spring 2020



Client / Server communication

• Original JavaScript API: XmlHttpRequest

• Newer APIs discussed in section
– fetch API returns a Promise object

• widely used in JS programming these days
• works well for sequential reqs: start task 1, wait for result, 

start task 2, wait for result, start task 3, wait for result
• works well for parallel reqs: start tasks 1–3, wait for all

– async / await JS keywords automatically create promises
• write sequential code in one block
• compiler will split into separate pieces

CSE 331 Spring 2020 27



Client / Server communication

• By default, client can only talk to the server from 
which the code was loaded
– same machine and same port
– “same origin” policy

• For development, we often want to split do this
– npm runs a separate server that recompiles client code
– can allow cross-domain requests in the Java server

• example code does this
– can set up recompiling server to forward these requests
– (annoying but we’re stuck with it)

CSE 331 Spring 2020 28



Debugging

• Network tab in Chrome shows every request
– full details of request

• path, headers, etc.
– full details of response

• status code, response body, etc.
– timing information

CSE 331 Spring 2020 29


