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Dynamic Web Content

• Earlier example had a fixed set of components.
– same for iPhone / Android apps

• More realistic apps need to change the set of 
components displayed on the screen dynamically
– consider Gmail as an example
– need the components to come from code
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Example 1

register-js/index.js
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Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. No support for modularity
– all the code and UI in a single file

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand
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JS Modules

• EcmaScript6 (ES6) added support for modules.

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { …

• Others can import using:

import { average } from ‘./filename’;
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Example 2

register-js2/…
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JS Classes

• ES6 added new syntax for classes:

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}
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More from Example 2

register-js2/…
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JS vs Java Classes

• JS method signatures are just the name
– JS objects are just HashMaps
– field names are the keys

• Java methods signatures are name + arg types
– e.g., average(int, int)

• JS has only one method with a given name
– language allows different numbers of arguments

• Missing arguments are undefined

– can strengthen a spec by accepting a wider set of 
possible input types
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Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. No support for modularity
– all the code and UI in a single file

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand
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TypeScript

• Adds type constraints to the code:
– arguments and variables

let x : number = 0;

– fields of classes
quarter: string;

• tsc performs type checking

• Creates version has type annotations removed
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TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, int]
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– …
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Example 3

register-ts/…
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TypeScript

• Type system is unsound
– can’t promise to find prevent all errors
– can be turned off at any point with any types

•x as Foo is an unchecked cast to Foo
•x! casts to non-null version of the type (useful!)

• Full description of the language at 
typescriptlang.org
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Problems

This is better, but it still has problems…

1. Still no checking of HTML (opaque strings)

2. Modularity is still poor
– need to join strings into one big string

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand
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JSX

• Fix the first problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression
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JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className, htmlFor, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div
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Problems

This is even better, but it still has problems…

1. Modularity is still poor
– need to join strings into one big string

2. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand
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React

• Regain modularity by allowing custom tags

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions
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React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …
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Example 4

register-react/…
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React State

• Last example was not dynamic!
– there was no model
– (why have classes then?)
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Structure of a React Application
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React State

• Last example was not dynamic!
– there was no model
– (why have classes then?)

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the HTML to match the 

HTML produced by this call
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Example 5

register-react2/…
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React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

• State should exist in the lowest common parent of all 
the components that need it
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React Event Listeners

• Solves the problems of poor modularity

• Also removes an ugly hack in the earlier code

<button onClick=“PickQuarter(…)”>
window[“PickQuarter”] = PickQuarter

• Event listeners can be added in the natural way:

<button onClick={this.onClick.bind(this)}>
<button onClick={evt => this.onClick(evt)}>
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Structure of a React Application

28CSE 331 Spring 2020

Model

Listeners

HTML

data and invariants

presentation

eventsupdates



Structure of a React Application

• At any moment, want model to store all data 
necessary to generate the exact UI on the screen

• Any time react updates the HTML, it should match up 
to what is currently
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React setState

• setState does not update state instantly:

// this.state.x is 2

this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
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React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast
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React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)
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