
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Modern Web UIs

CSE 331 Spring 2020 1



Dynamic Web Content

• Earlier example had a fixed set of components.
– same for iPhone / Android apps

• More realistic apps need to change the set of 
components displayed on the screen dynamically
– consider Gmail as an example
– need the components to come from code

CSE 331 Spring 2020 2



Example 1

register-js/index.js

CSE 331 Spring 2020 3



Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. No support for modularity
– all the code and UI in a single file

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand

CSE 331 Spring 2020 4



JS Modules

• EcmaScript6 (ES6) added support for modules.

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { …

• Others can import using:

import { average } from ‘./filename’;

CSE 331 Spring 2020 5



Example 2

register-js2/…

CSE 331 Spring 2020 6



JS Classes

• ES6 added new syntax for classes:

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}

CSE 331 Spring 2020 7



More from Example 2

register-js2/…

CSE 331 Spring 2020 8



JS vs Java Classes

• JS method signatures are just the name
– JS objects are just HashMaps
– field names are the keys

• Java methods signatures are name + arg types
– e.g., average(int, int)

• JS has only one method with a given name
– language allows different numbers of arguments

• Missing arguments are undefined

– can strengthen a spec by accepting a wider set of 
possible input types

CSE 331 Spring 2020 9



Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. No support for modularity
– all the code and UI in a single file

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand

CSE 331 Spring 2020 10



TypeScript

• Adds type constraints to the code:
– arguments and variables

let x : number = 0;

– fields of classes
quarter: string;

• tsc performs type checking

• Creates version has type annotations removed

CSE 331 Spring 2020 11



TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, int]
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– …

CSE 331 Spring 2020 12



Example 3

register-ts/…

CSE 331 Spring 2020 13



TypeScript

• Type system is unsound
– can’t promise to find prevent all errors
– can be turned off at any point with any types

•x as Foo is an unchecked cast to Foo
•x! casts to non-null version of the type (useful!)

• Full description of the language at 
typescriptlang.org

CSE 331 Spring 2020 14



Problems

This is better, but it still has problems…

1. Still no checking of HTML (opaque strings)

2. Modularity is still poor
– need to join strings into one big string

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand

CSE 331 Spring 2020 15



JSX

• Fix the first problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression

CSE 331 Spring 2020 16



JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className, htmlFor, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div

CSE 331 Spring 2020 17



Problems

This is even better, but it still has problems…

1. Modularity is still poor
– need to join strings into one big string

2. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand

CSE 331 Spring 2020 18



React

• Regain modularity by allowing custom tags

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Spring 2020 19



React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Spring 2020 20



Example 4

register-react/…

CSE 331 Spring 2020 21



React State

• Last example was not dynamic!
– there was no model
– (why have classes then?)

CSE 331 Spring 2020 22



Structure of a React Application

23CSE 331 Spring 2020

Model

Listeners

HTML

data and invariants

presentation

eventsupdates



React State

• Last example was not dynamic!
– there was no model
– (why have classes then?)

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the HTML to match the 

HTML produced by this call
CSE 331 Spring 2020 24



Example 5

register-react2/…

CSE 331 Spring 2020 25



React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

• State should exist in the lowest common parent of all 
the components that need it

CSE 331 Spring 2020 26



React Event Listeners

• Solves the problems of poor modularity

• Also removes an ugly hack in the earlier code

<button onClick=“PickQuarter(…)”>
window[“PickQuarter”] = PickQuarter

• Event listeners can be added in the natural way:

<button onClick={this.onClick.bind(this)}>
<button onClick={evt => this.onClick(evt)}>

CSE 331 Spring 2020 27



Structure of a React Application

28CSE 331 Spring 2020

Model

Listeners

HTML

data and invariants

presentation

eventsupdates



Structure of a React Application

• At any moment, want model to store all data 
necessary to generate the exact UI on the screen

• Any time react updates the HTML, it should match up 
to what is currently

CSE 331 Spring 2020 29



React setState

• setState does not update state instantly:

// this.state.x is 2

this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
CSE 331 Spring 2020 30



React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast

CSE 331 Spring 2020 31



React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

CSE 331 Spring 2020 32


