
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Modern Web UIs

CSE 331 Spring 2020 34



Dynamic Web Content

• Earlier example had a fixed set of components.
– same for iPhone / Android apps

• More realistic apps need to change the set of 
components displayed on the screen dynamically
– consider Gmail as an example
– need the components to come from code

CSE 331 Spring 2020 35



ES6 Example 1

register-js/index.js

CSE 331 Spring 2020 36



Structure of a GUI

37CSE 331 Spring 2020

Model

Listeners

Components

data and invariants

presentation

eventsupdates



Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. No support for modularity
– all the code and UI in a single file

3. (…one more on Friday…)

CSE 331 Spring 2020 38



JS Modules

• EcmaScript6 (ES6) added support for modules.

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { …

• Others can import using:

import { average } from ‘./filename’;

CSE 331 Spring 2020 39



ES6 Example 2

register-js2/…

CSE 331 Spring 2020 40



JS Classes

• ES6 added new syntax for classes:

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}

CSE 331 Spring 2020 41



ES6 Example 2

register-js2/…

CSE 331 Spring 2020 42



Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. Limited support for modularity
– whole UI in a single file
– need to join strings into one big string

CSE 331 Spring 2020 43



TypeScript

• Adds type constraints to the code:
– arguments and variables

let x : number = 0;

– fields of classes
quarter: string;

CSE 331 Spring 2020 44



TypeScript Example

register-ts/…

CSE 331 Spring 2020 45



TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, int]
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– …

CSE 331 Spring 2020 46



TypeScript

• Type casts
– x as Foo is an unchecked cast to Foo
– x! casts to non-null version of the type (useful!)

• Full description of the language at 
typescriptlang.org

CSE 331 Spring 2020 47



Problems

This is better, but it still has problems…

1. Still no checking of HTML (opaque strings)

2. Limited support for modularity
– whole UI in a single file
– need to join strings into one big string

CSE 331 Spring 2020 48



JSX

• Fix the first problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression

CSE 331 Spring 2020 49



Problems

This is even better, but it still has problems…

1. Limited support for modularity
– whole UI in a single file
– need to join strings into one big string

CSE 331 Spring 2020 50



React

• Regain modularity by allowing custom tags

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Spring 2020 51



React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Spring 2020 52



React Example

register-react/…

CSE 331 Spring 2020 53



JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className, htmlFor, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div

CSE 331 Spring 2020 54



React State

• Last example was not dynamic!
– there was no model

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the HTML to match the 

HTML produced by this call

CSE 331 Spring 2020 55



Example 5

register-react2/…

CSE 331 Spring 2020 56



Structure of a React Application

57CSE 331 Spring 2020

Model

Listeners

HTML

data and invariants

presentation

eventsupdates



React Gotchas

• Model must store all data necessary to generate the 
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored 
in the model
– e.g., every text field’s value must be part of some 

React component’s state
– render produces

<input type=“text” value={…}>

CSE 331 Spring 2020 58



React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will 
be hard to catch!

CSE 331 Spring 2020 59



React Gotchas

• setState does not update state instantly:

// this.state.x is 2

this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
CSE 331 Spring 2020 60


