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Dynamic Web Content

• Earlier example had a fixed set of components.
– same for iPhone / Android apps

• More realistic apps need to change the set of 
components displayed on the screen dynamically
– consider Gmail as an example
– need the components to come from code
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ES6 Example 1

register-js/index.js
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Structure of a GUI

37CSE 331 Spring 2020

Model

Listeners

Components

data and invariants

presentation

eventsupdates



Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. No support for modularity
– all the code and UI in a single file

3. (…one more on Friday…)
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JS Modules

• EcmaScript6 (ES6) added support for modules.

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { …

• Others can import using:

import { average } from ‘./filename’;
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ES6 Example 2

register-js2/…
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JS Classes

• ES6 added new syntax for classes:

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}
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ES6 Example 2

register-js2/…
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Problems

These tools can be used to write Gmail
But it has a number of problems…

1. Lack of tool support
– no checking of types, tags, etc.

2. Limited support for modularity
– whole UI in a single file
– need to join strings into one big string
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TypeScript

• Adds type constraints to the code:
– arguments and variables

let x : number = 0;

– fields of classes
quarter: string;

CSE 331 Spring 2020 44



TypeScript Example

register-ts/…

CSE 331 Spring 2020 45



TypeScript Types

• Basics from JavaScript:
number, string, boolean, string[], Object

• But also
– specific classes Foo
– tuples: [string, int]
– enums (as in Java)
– allows null to be included or excluded (unlike Java)
– any type allows any value
– …
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TypeScript

• Type casts
– x as Foo is an unchecked cast to Foo
– x! casts to non-null version of the type (useful!)

• Full description of the language at 
typescriptlang.org
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Problems

This is better, but it still has problems…

1. Still no checking of HTML (opaque strings)

2. Limited support for modularity
– whole UI in a single file
– need to join strings into one big string
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JSX

• Fix the first problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression
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Problems

This is even better, but it still has problems…

1. Limited support for modularity
– whole UI in a single file
– need to join strings into one big string
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React

• Regain modularity by allowing custom tags

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions
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React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …
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React Example

register-react/…
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JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className, htmlFor, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div
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React State

• Last example was not dynamic!
– there was no model

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the HTML to match the 

HTML produced by this call
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Example 5

register-react2/…
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Structure of a React Application
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React Gotchas

• Model must store all data necessary to generate the 
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored 
in the model
– e.g., every text field’s value must be part of some 

React component’s state
– render produces

<input type=“text” value={…}>
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React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will 
be hard to catch!
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React Gotchas

• setState does not update state instantly:

// this.state.x is 2

this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
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