
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Callbacks, Events, and Event-Driven Programs

CSE 331 Spring 2020 1

The limits of scaling

What prevents us from building huge,
intricate structures that work perfectly and
indefinitely?

– No friction
– No gravity
– No wear-and-tear

… it’s the difficulty of understanding them

So we split designs into sensible parts and
reduce interaction among the parts

– More cohesion within parts
– Less coupling across parts

CSE 331 Spring 2020 2

Design exercise

We will extend and modify this example throughout this lecture
– Provided code shows skeletal versions that compile

Our application has various styled words
– A mutable word with a color (and font, size, weight, …)
– Some styled words are spell-checked against a dictionary
– Some styled words forbid the letter ‘Q’ [toy example J]

Want good coupling, cohesion, and reuse

3CSE 331 Spring 2020

Available libraries
To set up the example, we assume we have:

1. StringBuffer to hold mutable text (in standard library)
– Methods insert, delete, and much more

2. A Dictionary class with a static method providing dictionaries
for available languages
class Dictionary {

public static Dictionary findDictionary(String lang){…}
public boolean contains(String s){…}
…

3. Classes for all the styling of words
– Skeletal code just assumes a Color class

• E.g., new Color("red")

CSE 331 Spring 2020 4

A direct approach

Version 1 (see v1.java)

Three new classes:

• StyledWord
– Contains a StringBuffer and a Color

• SpellCheckedStyledWord
– Contains a StyledWord and a Dictionary

• NoQsStyledWord
– Contains a StyledWord

CSE 331 Spring 2020 5

Module dependency diagram (MDD)

6

SpellCheckedStyledWord NoQsStyledWord

StyledWord

CSE 331 Spring 2020

What’s wrong with v1?

Cohesion: Seems fine – each class has 1 purpose

Reuse: So-so
– Subclassing would avoid all those forwarding methods

• but SpellCheckedStyledWord / NoQsStyledWord
might not be true subtypes

– No way to spell-check and forbid ‘Q’
• important if we want StyledWord to be a public library

Coupling: Problematic…

CSE 331 Spring 2020 7

“When the text changes”
class SpellcheckedStyledWord {
…
private void performSpellcheck(){…}
public void addLetter(char c, int pos) {

word.addLetter(c,position);
performSpellcheck();

}

SpellCheckedStyledWord and NoQsStyledWord need to
know whenever the text changes

– addLetter and deleteLetter
– Hopefully no other ones we forgot!
– But concept of “text changed” is something we want to leave

to StyledWord
– To avoid this coupling, want the “text changed” event to be

managed by StyledWord

CSE 331 Spring 2020 8

Moving “when the text changes”

Version 2 (see v2.java)
– (Not good but a stepping-stone to version 3)

Let’s make StyledWord responsible for any necessary spell-
checking or Q-removal

– A StyledWord’s state now includes:
• A Spellchecker if there is one
• A QRemover if there is one

– When the word changes, pass this to the spell-checker
and/or Q-remover

CSE 331 Spring 2020 9

What is right in v2?

Reuse: solves the problems with v1

Coupling:
– removes some dependence of SpellChecker / Q-Remover

on the details of StyledWord
– but on the other hand…

CSE 331 Spring 2020 10

Version 2 MDD

11

SpellChecker QRemover

StyledWord

CSE 331 Spring 2020

What’s wrong with v2?

Reuse: A bit better, but work-in progress
– No more forwarding methods
– Can spell-check or Q-remove or both
– But what if there’s a third (or fourth or…) thing we want to do

later when some words change

Cohesion: Worse: StyledWord shouldn’t be directly tracking what
needs spell-checking or Q-removal

Coupling: Solved our V1 coupling problem, but made our MDD
worse

CSE 331 Spring 2020 12

V2 uses callbacks
class StyledWord {

…
private void afterWordChange() {
if (spellchecker != null)

spellchecker.performSpellcheck(this);
if (qremover != null)

qremover.removeQs(this);
}

• performSpellcheck & removeQs passed to the constructor

• All the StyledWord does with those objects is call
performSpellcheck(this) or removeQs(this)

• performSpellcheck and removeQs are callbacks – code
passed in for the purpose of being called some time later

CSE 331 Spring 2020 13

Callbacks

Callback: “Code” provided by client to be used by library
• In Java, pass an object with the “code” in a method

Synchronous callbacks:
• Examples: HashMap calls its client’s hashCode, equals
• Useful when library needs the callback result immediately

Asynchronous callbacks:
• Register to indicate interest and where to call back
• Useful when the callback should be performed later, when

some interesting event occurs
• UIs, servers, etc.

14CSE 331 Spring 2020

The key decoupling insight

• StyledWord depends on Spellchecker and Qremover in
v2, but does not need to know anything about what these
classes do
– Just needs to call the call-backs when an event occurs (the

text changes)

• Weaken the dependency by introducing a much weaker
specification in the form of an interface or abstract class
– The interface implemented by things that can be notified

when the text changes

interface WordChangeListener {
public void onWordChange(StyledWord w);

}
CSE 331 Spring 2020 15

v3: take a WordChangeListener

class StyledWord {
...

private List<WordChangeListener> listeners;
public StyledWord(Collection<WordChangeListener> ls) {

this.listeners = new ArrayList<>(ls);
}

public void addLetter(char c, int position) {
text.insert(position,c);
afterWordChange();

}

private void afterWordChange() {
for (WordChangeListener listener : listeners)

listener.onWordChange(this);
}

CSE 331 Spring 2020 16

v3: implement WordChangeListener

class Spellchecker implements WordChangeListener {
…
public void onWordChange(StyledWord word) {

performSpellcheck(word); // as before

}
}

class QRemover implements WordChangeListener {
…
public void onWordChange(StyledWord word) {

removeQs(word); // as before
}

}

CSE 331 Spring 2020 17

A better MDD

• WordChangeListener is simple and weak

CSE 331 Spring 2020 18

SpellChecker QRemover

StyledWord

WordChangeListener

Judging v3

Cohesion: Good!

Coupling: Good!

Reuse: Good!
– Better than v2: can use any WordChangeListener -- no

need for to know what they are
• See ChangeCounter in v3.java

CSE 331 Spring 2020 19

Achievement unlocked: Observer Pattern

• v3 allows any number of listeners

• Cohesion: StyledWord handles styled text while supporting
listeners; each listener does its thing

• Coupling: Only via the weakly specified listener interface

This is the observer pattern
– Words can be observed via observers/listeners that are

notified via callbacks when an event (of interest) occurs
– Pattern: Something used over-and-over in software, worth

recognizing when appropriate and using common terms
– Widely used in public libraries

CSE 331 Spring 2020 20

Could be further improved...

• StyledWord v3 is reusable enough to be a public library

• But it is not as easy to use as it could be:
– listeners are only notified that a change has occurred
– it is up to them to figure out what changed
– (listener could do this by keeping a copy of the last version

for comparison, but that is hard word)

• Easy solution: StyledWord should pass a description of what
changed to listeners

CSE 331 Spring 2020 21

Improved WordChangeListener

interface WordChangeListener {
public void onWordChange(WordChangeEvent e);

}

class WordChangeEvent {
public final StyledWord target;
public int position; // where it changed
public String textAdded;
public String textRemoved;

}

Allows even more flexibility for StyledWord without any changes
needed for listeners (e.g., remove and add text in one operation).

CSE 331 Spring 2020 22

Final version of StyledWord

• Observable with events is widely used by important libraries
– network & file I/O libraries on servers
– user interface libraries on clients

• In fact, the fundamental structure of these programs is built
around processing events & notifying listeners
– the “main” of these programs is a loop that waits for events

and, when they arrive, notifies the appropriate listeners

CSE 331 Spring 2020 23

Event-driven programming

An event-driven program is designed to wait for events:
– program initializes then enters the event loop
– abstractly:

do {
e = getNextEvent();
process event e;

} while (e != quit);

Contrast with most programs we have written so far
– they perform specified steps in order and then exit
– that style is still used, just not as frequently

• example: computing Page Rank or other Big Data work

24CSE 331 Spring 2020

Server Programming

• Servers sit around waiting for events like:
– new client connections
– new data from the client (large scale servers)

• Simple version (normal scale):

while (true) {
wait for a client to connect
process the request; send a response back

}

– (might want to use a new thread for processing)
– web servers usually look like this (easiest solution)

25CSE 331 Spring 2020

Advanced Server Programming

• Large scale servers usually do not have one thread per client
– it would be hard to scale that past hundreds of clients
– (need a more complex solution to scale)

• Instead, they have a small number (1?) of threads that
simultaneously wait on events from all sockets
– new connections on the server socket
– new data to read on any client socket
– finish writing to any client socket

• (can then write more)
– handlers do not make any calls that might wait for something

• These servers look much more like GUI clients…
26CSE 331 Spring 2020

GUI Client Programming

• Clients sit around waiting for events like:
– mouse move/drag/click, button press, button release
– keyboard: key press or release, sometimes with modifiers

like shift/control/alt/etc.
– finger tap or drag on a touchscreen
– window resize/minimize/restore/close
– timer interrupt (including animations)
– network activity or file I/O (start, done, error)

• (we will see an example of this shortly)

27CSE 331 Spring 2020

Events in Java AWT/Swing/Android

AWT & Swing are the native Java libraries for writing GUIs
Android apps are also GUIs and written in Java

Most of the GUI widgets can generate events
– button clicks, menu picks, key press, etc.

Events are handled using the Observer Pattern:
– objects wishing to handle events register as observers with

the objects that generate them
– when an event happens, appropriate method in each

observer is called
– as expected, multiple observers can watch for and be

notified of an event generated by an object

Likewise, advanced servers register handlers on each socket
28CSE 331 Spring 2020

Event listeners / handlers

Event listeners must implement the proper interface. AWT/Swing:
KeyListener – handle key press
ActionListener – handle button press
MouseListener – handle mouse clicks
MouseMotionListener – handle mouse move/drag

When an event occurs
– the appropriate method specified in the interface is called:
actionPerformed, keyPressed, mouseClicked,
mouseDragged, …

– an event object is passed to the listener method

Interfaces are different in Android but all conceptually the same

29CSE 331 Spring 2020

Event objects

GUI event is represented by an event object
– passes information often needed by the handler

In AWT/Swing, the superclass is AWTEvent. Some subclasses are:
ActionEvent – GUI-button press
KeyEvent – keyboard
MouseEvent – mouse move/drag/click/button

In Android, the superclass is InputEvent.

Event objects contain
– UI object that triggered the event
– other information depending on event. Examples:

ActionEvent – text string from a button
MouseEvent – mouse coordinates

30CSE 331 Spring 2020

Example: button

Create a JButton and add it to a window
– (we will talk about windows next time)

Create an object that implements ActionListener
– contains an actionPerformed method

Add the listener object to the button’s listeners
– then it will be called when the button is pressed

ButtonDemo1.java

31CSE 331 Spring 2020

Listener classes

ButtonDemo1.java defines a class that is used only once to
create a listener for a single button.

Not ideal in a couple of respects:
– listener code is far away from where it’s used

• that makes it a little harder to understand
– it’s a lot of code for just one listener

• imagine doing this in a UI with thousands of components

A more convenient shortcut: lambdas
– in Java 8+, you can use lambdas to create anonymous

methods instead of creating a class that only exists to house
one method.

32CSE 331 Spring 2020

Example: button

ButtonDemo2.java

33CSE 331 Spring 2020

Android similarities

• Events and listeners work in the same manner
• Here is code that listens for a button click:

Button btn = ...;
btn.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
Log.d(“My Button”, “You pressed it”);

}
});

• Many of the same widgets as in AWT/Swing

CSE 331 Spring 2020 34

UI Thread

• Where is the event loop in these Swing programs?

• The library creates a separate thread that runs that event loop
– the “UI thread”
– created when the JFrame is made visible
– application does not exit until this thread also finishes

• that happens automatically when the window is closed

CSE 331 Spring 2020 35

CHAT APP + SERVER

CSE 331 Spring 2020 36

Sockets

• Each client connection is represented by a “socket”

• A socket is like a file
– can be read from and written to
– (in Unix, sockets and files are nearly identical)

• Client and server each have “half” of the socket
– what the client writes is read by the server
– what the server writes is read by the client

37CSE331 Fall Winter 2019

client
socket

server
socketwrite

writeread

read

Example: Chat Server

ChatServer.java

(warning: some unfamiliar APIs…)

38CSE 331 Spring 2020

Example: GUI + sockets

Most modern client applications have to both
– display a GUI
– communicate with one or more servers
– (doing both creates additional difficulties…)

We can make an example by writing a GUI chat client

ChatClientGUI.java

39CSE 331 Spring 2020

UI thread

• The event loop of a GUI program is run on the “UI thread”

• Often have need of additional threads
– example: chat UI needed one to listen for new messages
– any work that may take > 200ms should be done elsewhere

• Warning: most UI frameworks are not multi-thread safe
– this will not be an issue in this class but will be IRL
– very few UI API methods can be called from other threads
– instead, they provide ways to push work onto the UI thread

• pass a callback to be called from the UI thread
• then perform the UI changes you need there

CSE 331 Spring 2020 40

