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The limits of scaling

What prevents us from building huge, 
intricate structures that work perfectly and 
indefinitely? 

– No friction
– No gravity
– No wear-and-tear

… it’s the difficulty of understanding them

So we split designs into sensible parts and 
reduce interaction among the parts 

– More cohesion within parts
– Less coupling across parts
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Design exercise

We will extend and modify this example throughout this lecture
– Provided code shows skeletal versions that compile

Our application has various styled words
– A mutable word with a color (and font, size, weight, …)
– Some styled words are spell-checked against a dictionary
– Some styled words forbid the letter ‘Q’ [toy example J]

Want good coupling, cohesion, and reuse
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Available libraries
To set up the example, we assume we have:

1. StringBuffer to hold mutable text (in standard library)
– Methods insert, delete, and much more

2. A Dictionary class with a static method providing dictionaries 
for available languages
class Dictionary { 

public static Dictionary findDictionary(String lang){…}
public boolean contains(String s){…}
… 

3. Classes for all the styling of words
– Skeletal code just assumes a Color class

• E.g., new Color("red")
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A direct approach

Version 1 (see v1.java)

Three new classes:

• StyledWord
– Contains a StringBuffer and a Color

• SpellCheckedStyledWord
– Contains a StyledWord and a Dictionary

• NoQsStyledWord
– Contains a StyledWord
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Module dependency diagram (MDD)
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SpellCheckedStyledWord NoQsStyledWord

StyledWord
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What’s wrong with v1?

Cohesion: Seems fine – each class has 1 purpose

Reuse: So-so
– Subclassing would avoid all those forwarding methods

• but SpellCheckedStyledWord / NoQsStyledWord
might not be true subtypes

– No way to spell-check and forbid ‘Q’
• important if we want StyledWord to be a public library

Coupling: Problematic…
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“When the text changes”
class SpellcheckedStyledWord {
…
private void performSpellcheck(){…}
public void addLetter(char c, int pos) {

word.addLetter(c,position);
performSpellcheck();

}

SpellCheckedStyledWord and NoQsStyledWord need to 
know whenever the text changes

– addLetter and deleteLetter
– Hopefully no other ones we forgot!
– But concept of “text changed” is something we want to leave 

to StyledWord
– To avoid this coupling, want the “text changed” event to be 

managed by StyledWord
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Moving “when the text changes”

Version 2 (see v2.java)
– (Not good but a stepping-stone to version 3)

Let’s make StyledWord responsible for any necessary spell-
checking or Q-removal

– A StyledWord’s state now includes:
• A Spellchecker if there is one
• A QRemover if there is one

– When the word changes, pass this to the spell-checker 
and/or Q-remover
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What is right in v2?

Reuse: solves the problems with v1

Coupling:
– removes some dependence of SpellChecker / Q-Remover 

on the details of StyledWord
– but on the other hand…
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Version 2 MDD
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SpellChecker QRemover

StyledWord
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What’s wrong with v2?

Reuse: A bit better, but work-in progress
– No more forwarding methods
– Can spell-check or Q-remove or both
– But what if there’s a third (or fourth or…) thing we want to do 

later when some words change

Cohesion: Worse: StyledWord shouldn’t be directly tracking what 
needs spell-checking or Q-removal

Coupling: Solved our V1 coupling problem, but made our MDD 
worse
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V2 uses callbacks
class StyledWord {

…
private void afterWordChange() {
if (spellchecker != null)

spellchecker.performSpellcheck(this);
if (qremover != null) 

qremover.removeQs(this);
}

• performSpellcheck & removeQs passed to the constructor

• All the StyledWord does with those objects is call 
performSpellcheck(this) or removeQs(this)

• performSpellcheck and removeQs are callbacks – code 
passed in for the purpose of being called some time later
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Callbacks

Callback:  “Code” provided by client to be used by library
• In Java, pass an object with the “code” in a method

Synchronous callbacks:
• Examples:  HashMap calls its client’s hashCode, equals
• Useful when library needs the callback result immediately

Asynchronous callbacks:
• Register to indicate interest and where to call back
• Useful when the callback should be performed later, when 

some interesting event occurs
• UIs, servers, etc.
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The key decoupling insight

• StyledWord depends on Spellchecker and Qremover in 
v2, but does not need to know anything about what these 
classes do
– Just needs to call the call-backs when an event occurs (the 

text changes)

• Weaken the dependency by introducing a much weaker 
specification in the form of an interface or abstract class
– The interface implemented by things that can be notified 

when the text changes

interface WordChangeListener {
public void onWordChange(StyledWord w);

}
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v3: take a WordChangeListener

class StyledWord {
...

private List<WordChangeListener> listeners;
public StyledWord(Collection<WordChangeListener> ls) { 

this.listeners = new ArrayList<>(ls);
}

public void addLetter(char c, int position) { 
text.insert(position,c); 
afterWordChange();

}

private void afterWordChange() {
for (WordChangeListener listener : listeners)

listener.onWordChange(this);
}
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v3: implement WordChangeListener

class Spellchecker implements WordChangeListener {
…
public void onWordChange(StyledWord word) {

performSpellcheck(word); // as before

}
}

class QRemover implements WordChangeListener {
…
public void onWordChange(StyledWord word) {

removeQs(word); // as before
}

}
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A better MDD

• WordChangeListener is simple and weak
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Judging v3

Cohesion: Good!

Coupling: Good!

Reuse: Good!
– Better than v2: can use any WordChangeListener -- no 

need for to know what they are 
• See ChangeCounter in v3.java
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Achievement unlocked: Observer Pattern

• v3 allows any number of listeners

• Cohesion: StyledWord handles styled text while supporting 
listeners; each listener does its thing

• Coupling: Only via the weakly specified listener interface

This is the observer pattern
– Words can be observed via observers/listeners that are 

notified via callbacks when an event (of interest) occurs
– Pattern: Something used over-and-over in software, worth 

recognizing when appropriate and using common terms
– Widely used in public libraries
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Could be further improved...

• StyledWord v3 is reusable enough to be a public library

• But it is not as easy to use as it could be:
– listeners are only notified that a change has occurred
– it is up to them to figure out what changed
– (listener could do this by keeping a copy of the last version 

for comparison, but that is hard word)

• Easy solution: StyledWord should pass a description of what 
changed to listeners
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Improved WordChangeListener

interface WordChangeListener {
public void onWordChange(WordChangeEvent e);

}

class WordChangeEvent {
public final StyledWord target;
public int position;  // where it changed
public String textAdded;
public String textRemoved;

}

Allows even more flexibility for StyledWord without any changes 
needed for listeners (e.g., remove and add text in one operation).
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Final version of StyledWord

• Observable with events is widely used by important libraries
– network & file I/O libraries on servers
– user interface libraries on clients

• In fact, the fundamental structure of these programs is built 
around processing events & notifying listeners
– the “main” of these programs is a loop that waits for events 

and, when they arrive, notifies the appropriate listeners
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Event-driven programming

An event-driven program is designed to wait for events:
– program initializes then enters the event loop
– abstractly:

do {
e = getNextEvent();
process event e;

} while (e != quit);

Contrast with most programs we have written so far
– they perform specified steps in order and then exit
– that style is still used, just not as frequently

• example: computing Page Rank or other Big Data work
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Server Programming

• Servers sit around waiting for events like:
– new client connections
– new data from the client (large scale servers)

• Simple version (normal scale):

while (true) {
wait for a client to connect
process the request; send a response back

}

– (might want to use a new thread for processing)
– web servers usually look like this (easiest solution)
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Advanced Server Programming

• Large scale servers usually do not have one thread per client
– it would be hard to scale that past hundreds of clients
– (need a more complex solution to scale)

• Instead, they have a small number (1?) of threads that 
simultaneously wait on events from all sockets
– new connections on the server socket
– new data to read on any client socket
– finish writing to any client socket

• (can then write more)
– handlers do not make any calls that might wait for something

• These servers look much more like GUI clients…
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GUI Client Programming

• Clients sit around waiting for events like:
– mouse move/drag/click, button press, button release
– keyboard: key press or release, sometimes with modifiers 

like shift/control/alt/etc.
– finger tap or drag on a touchscreen
– window resize/minimize/restore/close
– timer interrupt (including animations)
– network activity or file I/O (start, done, error)

• (we will see an example of this shortly)
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Events in Java AWT/Swing/Android

AWT & Swing are the native Java libraries for writing GUIs
Android apps are also GUIs and written in Java

Most of the GUI widgets can generate events
– button clicks, menu picks, key press, etc.

Events are handled using the Observer Pattern:
– objects wishing to handle events register as observers with 

the objects that generate them
– when an event happens, appropriate method in each 

observer is called
– as expected, multiple observers can watch for and be 

notified of an event generated by an object

Likewise, advanced servers register handlers on each socket
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Event listeners / handlers

Event listeners must implement the proper interface. AWT/Swing: 
KeyListener – handle key press
ActionListener – handle button press
MouseListener – handle mouse clicks
MouseMotionListener – handle mouse move/drag

When an event occurs
– the appropriate method specified in the interface is called: 
actionPerformed, keyPressed, mouseClicked, 
mouseDragged, …

– an event object is passed to the listener method

Interfaces are different in Android but all conceptually the same
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Event objects

GUI event is represented by an event object
– passes information often needed by the handler

In AWT/Swing, the superclass is AWTEvent. Some subclasses are:
ActionEvent – GUI-button press
KeyEvent – keyboard
MouseEvent – mouse move/drag/click/button

In Android, the superclass is InputEvent.

Event objects contain
– UI object that triggered the event
– other information depending on event.  Examples:

ActionEvent – text string from a button
MouseEvent – mouse coordinates
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Example: button

Create a JButton and add it to a window
– (we will talk about windows next time)

Create an object that implements ActionListener
– contains an actionPerformed method

Add the listener object to the button’s listeners
– then it will be called when the button is pressed

ButtonDemo1.java

31CSE 331 Spring 2020



Listener classes

ButtonDemo1.java defines a class that is used only once to 
create a listener for a single button.

Not ideal in a couple of respects:
– listener code is far away from where it’s used

• that makes it a little harder to understand
– it’s a lot of code for just one listener

• imagine doing this in a UI with thousands of components

A more convenient shortcut: lambdas
– in Java 8+, you can use lambdas to create anonymous 

methods instead of creating a class that only exists to house 
one method.
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Example: button

ButtonDemo2.java
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Android similarities

• Events and listeners work in the same manner
• Here is code that listens for a button click:

Button btn = ...;
btn.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
Log.d(“My Button”, “You pressed it”);

}
});

• Many of the same widgets as in AWT/Swing
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UI Thread

• Where is the event loop in these Swing programs?

• The library creates a separate thread that runs that event loop
– the “UI thread”
– created when the JFrame is made visible
– application does not exit until this thread also finishes

• that happens automatically when the window is closed
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CHAT APP + SERVER
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Sockets

• Each client connection is represented by a “socket”

• A socket is like a file
– can be read from and written to
– (in Unix, sockets and files are nearly identical)

• Client and server each have “half” of the socket
– what the client writes is read by the server
– what the server writes is read by the client
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Example: Chat Server

ChatServer.java

(warning: some unfamiliar APIs…)
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Example: GUI + sockets

Most modern client applications have to both
– display a GUI
– communicate with one or more servers
– (doing both creates additional difficulties…)

We can make an example by writing a GUI chat client

ChatClientGUI.java

39CSE 331 Spring 2020



UI thread

• The event loop of a GUI program is run on the “UI thread”

• Often have need of additional threads
– example: chat UI needed one to listen for new messages
– any work that may take > 200ms should be done elsewhere

• Warning: most UI frameworks are not multi-thread safe
– this will not be an issue in this class but will be IRL
– very few UI API methods can be called from other threads
– instead, they provide ways to push work onto the UI thread

• pass a callback to be called from the UI thread
• then perform the UI changes you need there
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