
Where are we?
• Done:

– basics of generic types for classes and interfaces
– basics of bounding generics

• Now:
– generic methods [not just using type parameters of class]
– generics and subtyping
– using bounds for more flexible subtyping
– using wildcards for more convenient bounds
– related digression: Java’s array subtyping
– Java realities: type erasure

• unchecked casts
• equals interactions
• creating generic arrays

CSE 331 Spring 2020 39

Examples

[Compare to earlier version]

interface Set<E> {
void addAll(Collection<? extends E> c);

}

• More idiomatic (but equally powerful) compared to
<T extends E> void addAll(Collection<T> c);

• More powerful than void addAll(Collection<E> c);

CSE 331 Spring 2020 40

Wildcards

Syntax: for a type-parameter instantiation (inside the <…>), can write:
– ? extends Type, some unspecified subtype of Type
– ? is shorthand for ? extends Object
– ? super Type, some unspecified superclass of Type

A wildcard is essentially an anonymous type variable
– each ? stands for some possibly-different unknown type

CSE 331 Spring 2020 41

More examples

<T extends Comparable<T>> T max(Collection<T> c);
– No change because T used more than once

CSE 331 Spring 2020 42

Wildcards

Syntax: for a type-parameter instantiation (inside the <…>), can write:
– ? extends Type, some unspecified subtype of Type
– ? is shorthand for ? extends Object
– ? super Type, some unspecified superclass of Type

A wildcard is essentially an anonymous type variable
– each ? stands for some possibly-different unknown type
– use a wildcard when you would use a type variable only once

(no need to give it a name)
• avoids declaring generic type variables

– communicates to readers of your code that the type’s “identity”
is not needed anywhere else

CSE 331 Spring 2020 43

More examples

<T> void copyTo(List<? super T> dst,
List<? extends T> src) {

for (T t : src)
dst.add(t);

}

Why this works:
– lower bound of T for where callee puts values
– upper bound of T for where callee gets values
– callers get the subtyping they want

• Example: copy(numberList, integerList)
• Example: copy(stringList, stringList)

CSE 331 Spring 2020 44

PECS: Producer Extends, Consumer Super

Should you use extends or super or neither?
– use ? extends T when you get values (from a producer)

• no problem if it’s a subtype
• (the co-variant subtyping case)

– use ? super T when you put values (into a consumer)
• no problem if it’s a supertype
• (the contra-variant subtyping case)

– use neither (just T, not ?) if you both get and put
• can’t be as flexible here

<T> void copyTo(List<? super T> dst,
List<? extends T> src);

45CSE 331 Spring 2020

More on lower bounds

• As we’ve seen, lower-bound ? super T is useful for “consumers”

• Upper-bound ? extends T could be rewritten without wildcards,
but wildcards preferred style where they suffice

• But lower-bound is only available for wildcards in Java
– this does not parse:

<T super Foo> void m(Bar<T> x);

– no good reason for Java not to support such lower bounds
except designers decided it wasn’t useful enough to bother

• ¯_(ツ)_/¯

CSE 331 Spring 2020 46

? versus Object

? indicates a particular but unknown type
void printAll(List<?> lst) {…}

Difference between List<?> and List<Object>:
– can instantiate ? with any type: Object, String, …
– List<Object> much more restrictive:

• e.g., wouldn't take a List<String>

Difference between List<Foo> and List<? extends Foo>:
– In latter, element type is one unknown subtype of Foo

Example: List<? extends Animal> might store only
Giraffes only (no Zebras)

– Former allows anything that is a subtype of Foo in the same list
Example: List<Animal> could store Giraffes and Zebras

47CSE 331 Spring 2020

Where are we?
• Done:

– basics of generic types for classes and interfaces
– basics of bounding generics

• Now:
– generic methods [not just using type parameters of class]
– generics and subtyping
– using bounds for more flexible subtyping
– using wildcards for more convenient bounds
– related digression: Java’s array subtyping
– Java realities: type erasure

• unchecked casts
• equals interactions
• creating generic arrays

CSE 331 Spring 2020 48

Java arrays

We know how to use arrays:
– declare an array holding Type elements: Type[]
– get an element: x[i]
– set an element x[i] = e;

Java included the syntax above because it’s common and concise

But can reason about how it should work the same as this:
class Array<T> {

public T get(int i) { … “magic” … }
public T set(T newVal, int i) {… “magic” …}

}

So: If Type1 is a subtype of Type2, how should Type1[] and
Type2[] be related??

CSE 331 Spring 2020 49

Java Arrays

• Given everything we have learned, if Type1 is a subtype of
Type2, then Type1[] and Type2[] should be unrelated
– invariant subtyping for generics
– because arrays are mutable

CSE 331 Spring 2020 50

Surprise!

• Given everything we have learned, if Type1 is a subtype of
Type2, then Type1[] and Type2[] should be unrelated
– invariant subtyping for generics
– because arrays are mutable

• But in Java, if Type1 is a subtype of Type2,
then Type1[] is a subtype of Type2[] (covariant subtyping)
– not true subtyping: the subtype does not support setting an

array element to hold a Type2 (spoiler: throws an exception)
– Java (and C#) made this decision in pre-generics days

• needed to write reusable sorting routines, etc.
• also ¯_(ツ)_/¯

CSE 331 Spring 2020 51

What can happen: the good

Programmers can use this subtyping to “do okay stuff”

void maybeSwap(LibraryHolding[] arr) {
if(arr[17].dueDate() < arr[34].dueDate())

// … swap arr[17] and arr[34]
}

// client with subtype
Book[] books = …;
maybeSwap(books); // relies on covariant

// array subtyping

CSE 331 Spring 2020 52

LibraryHolding

Book CD

What can happen: the bad

Something in here must go wrong!

void replace17(LibraryHolding[] arr,
LibraryHolding h) {

arr[17] = h;
}

// client with subtype
Book[] books = …;
LibraryHolding theWall = new CD("Pink Floyd",

"The Wall", …);
replace17(books, theWall);
Book b = books[17]; // would hold a CD
b.getChapters(); // so this would fail

CSE 331 Spring 2020 53

LibraryHolding

Book CD

Java’s choice
• Java normally guarantees run-time type is a subtype of the

compile-time type
– this was violated for the Book b variable

• To preserve the guarantee, Java must never get that far:
– each array “knows” its actual run-time type (e.g., Book [])
– trying to store a supertype into an index causes
ArrayStoreException (at run time)

• So the body of replace17 would raise an exception
– even though replace17 is entirely reasonable

• and fine for plenty of “careful” clients
– every Java array-update includes this run-time check

• (array-reads never fail this way – why?)
– beware careful with array subtyping

CSE 331 Spring 2020 54

Where are we?
• Done:

– basics of generic types for classes and interfaces
– basics of bounding generics

• Now:
– generic methods [not just using type parameters of class]
– generics and subtyping
– using bounds for more flexible subtyping
– using wildcards for more convenient bounds
– related digression: Java’s array subtyping
– Java realities: type erasure

• unchecked casts
• equals interactions
• creating generic arrays

CSE 331 Spring 2020 55

Type erasure

All generic types become type Object once compiled
– gives backward compatibility (a selling point at time of adoption)
– at run-time, all generic instantiations have the same type

List<String> lst1 = new ArrayList<String>();
List<Integer> lst2 = new ArrayList<Integer>();
lst1.getClass() == lst2.getClass() // true

Cannot use instanceof to discover a type parameter

Collection<?> cs = new ArrayList<String>();
if (cs instanceof Collection<String>) { // illegal
...

}
56CSE 331 Spring 2020

Generics and casting

Casting to generic type results in an important warning
List<?> lg = new ArrayList<String>(); // ok
List<String> ls = (List<String>) lg; // warn

Compiler gives a warning because this is something the runtime
system will not check for you

Usually, if you think you need to do this, you're wrong
– a real need to do this is extremely rare

Object can also be cast to any generic type L
public static <T> T badCast(T t, Object o) {
return (T) o; // unchecked warning

}
57CSE 331 Spring 2020

The bottom-line

• Java guarantees a List<String> variable always holds a
(subtype of) the raw type List

• Java does not guarantee a List<String> variable always has
only String elements at run-time
– will be true if no unchecked cast warnings are shown
– compiler inserts casts to/from Object for generics

• if these casts fail, hard-to-debug errors result:
often far from where conceptual mistake occurred

• So, two reasons not to ignore warnings:
1. You’re violating good style/design/subtyping/generics
2. You’re risking difficult debugging

CSE 331 Spring 2020 58

Recall equals

class Node {
…
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Node)) {
return false;

}
Node n = (Node) obj;
return this.data().equals(n.data());

}
…

}

59CSE 331 Spring 2020

equals for a parameterized class

class Node<E> {
…
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Node<E>)) {
return false;

}
Node<E> n = (Node<E>) obj;
return this.data().equals(n.data());

}
…

}

Erasure: Type
arguments do not
exist at runtime

60CSE 331 Spring 2020

equals for a parameterized class

class Node<E> {
…
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Node<?>)) {
return false;

}
Node<E> n = (Node<E>) obj;
return this.data().equals(n.data());

}
…

}

More erasure: At run
time, do not know what
E is and will not be
checked, so don’t
indicate otherwise

61CSE 331 Spring 2020

equals for a parameterized class

class Node<E> {
…
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Node<?>)) {
return false;

}
Node<?> n = (Node<?>) obj;
return this.data().equals(n.data());

}
…

}

Works if the type of obj
is Node<Elephant>
or Node<String> or

…

Node<Elephant> Node<String>

Node<? extends Object>

CSE 331 Spring 2020 62

Leave it to here to “do the
right thing” if this and n

differ on element type

Generics and arrays

public class Foo<T> {
private T aField; // ok
private T[] anArray; // ok

public Foo() {
aField = new T(); // compile-time error
anArray = new T[10]; // compile-time error

}
}

• You cannot create objects or arrays of a parameterized type
– type info is not available at runtime

63CSE 331 Spring 2020

Necessary array cast

public class Foo<T> {
private T aField;
private T[] anArray;

@SuppressWarnings("unchecked")
public Foo(T param) {

aField = param;
anArray = (T[]) new Object[10];

}
}
You can declare variables of type T, accept them as parameters,
return them, or create arrays by casting Object[]

– casting to generic types is not type-safe (hence the warning)
– Effective Java: use ArrayList instead

64CSE 331 Spring 2020

Some final thoughts…

CSE 331 Spring 2020 65

Generics clarify your code

interface Map {
Object put(Object key, Object value);
…

}

interface Map<Key,Value> {
Value put(Key key, Value value);
…

}

• Generics usually clarify the implementation
– (but sometimes uglify: wildcards, arrays, instantiation)

• Generics always make the client code prettier and safer

plus casts in client code
→ possibility of run-time errors

66CSE 331 Spring 2020

Tips when writing a generic class

• Think through whether you really need to make it generic
– if it’s not really a container, most likely a mistake

• Start by writing a concrete instantiation
– get it correct (testing, reasoning, etc.)
– consider writing a second concrete version

• Generalize it by adding type parameters
– think about which types are the same or different
– the compiler will help you find errors

• It will become easier with practice to write generic from the start

67CSE 331 Spring 2020

