
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Subtypes and Subclasses

What is subtyping?

Sometimes “every B is an A”
– examples in a library database:

• every book is a library holding
• every CD is a library holding

For subtyping, “B is a subtype of A” means:
– “every object that satisfies the rules for a B

also satisfies the rules for an A”
– (B is a strengthening of A)

Goal: code written using A's spec operates correctly if given a B
– plus: clarify design, share tests, (sometimes) share code

2

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE 331 Spring 2020

Subtypes are substitutable

Subtypes are substitutable for supertypes
– Liskov substitution principle
– instances of subtype won't surprise client by failing to satisfy the

supertype's specification
– instances of subtype won't surprise client with more expectations

than the supertype's specification

We say B is a (true) subtype of A if B has a stronger specification than A
– (or is equally strong)
– this is not the same as a Java subtype (e.g. subclass)
– Java subclasses that are not true subtypes: confusing & dangerous

• but unfortunately common L
• Java allows casting sub- to supertypes assuming true subtypes

3CSE 331 Spring 2020

Subtyping vs. subclassing

Substitution (subtype) is a matter of specifications
– B is a subtype of A iff an object of B can masquerade as an

object of A in any context
– B is a subtype if its spec is is a strengthening of A’s spec

Inheritance (subclass) is a matter of implementations
– factor out repeated code
– to create a new class, write only the differences

Java purposely merges these notions for classes:
– every subclass is a Java subtype
– but not necessarily a true subtype
– (though Java casting rules assume true subtypes)

4CSE 331 Spring 2020

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products…

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice() {

return price;
}
public int getTax() {

return (int)(getPrice() * 0.086);
}
…

}

... and we need a class for products that are on sale
5CSE 331 Spring 2020

Copy and Paste

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice() {

return (int)(price*factor);
}
public int getTax() {

return (int)(getPrice() * 0.086);
}
…

}

Not a good choice. — Why? (hint: properties of high quality code)
6CSE 331 Spring 2020

Inheritance makes small extensions small

Better:

class SaleProduct extends Product {
private float factor;
public int getPrice() {
return (int)(super.getPrice()*factor);

}
}

7CSE 331 Spring 2020

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods
– in implementation:

• simpler maintenance: fix bugs once (changeability)
– in specification:

• clients who understand the superclass specification need
only study novel parts of the subclass (readability)

• differences not buried under mass of similarities
– modularity: can ignore private fields and methods of superclass

(if properly designed)

• Ability to substitute new implementations (modularity)
– no client code changes required to use new subclasses

8CSE 331 Spring 2020

Subclassing can be misused

• Poor design can produce subclasses that depend on many
implementation details of superclasses
– super- and sub-classes are often highly interdependent

(i.e., tightly coupled)
• Changes in superclasses can break subclasses

– “fragile base class problem”

• Subtyping and implementation inheritance are orthogonal!
– subclassing gives you both
– sometimes you want just one. instead use:

• interfaces: subtyping without inheritance
• composition: use implementation without subtyping

– can seem less convenient, but often better long-term

9CSE 331 Spring 2020

(NON-)EXAMPLES

CSE 331 Spring 2020 10

Is every square a rectangle?
interface Rectangle {
// effects: fits shape to given size:
// thispost.width = w, thispost.height = h
void setSize(int w, int h);

}
interface Square extends Rectangle {…}

Which is the best option for Square’s setSize specification?
1.// effects: sets all edges to given size
void setSize(int edgeLength);

2. // requires: w = h
// effects: fits shape to given size

void setSize(int w, int h);
3.// effects: sets this.width and this.height to w
void setSize(int w, int h);

4. // effects: fits shape to given size
// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;
11CSE 331 Spring 2020

Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
– Rectangles are expected to have a width and height

that can be mutated independently
– Squares violate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
– Squares are expected to have equal widths and heights
– Rectangles violate that expectation, could surprise client

Subtyping is not always intuitive
– but it forces clear thinking and prevents errors

Solutions:
– make them unrelated (or siblings)
– make them immutable!

• recovers elementary-school intuition

12

Rectangle

Square

Square

Rectangle

Shape

Square Rectangle

CSE 331 Spring 2020

Inappropriate subtyping in the JDK
class Hashtable {
public void put(Object key, Object value){…}
public Object get(Object key){…}

}

// Keys and values are strings.
class Properties extends Hashtable {

public void setProperty(String key, String val) {
put(key,val);

}
public String getProperty(String key) {
return (String)get(key);

}
}

13CSE 331 Spring 2020

Properties p = new Properties();
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
– keys and values are Strings

But client can treat Properties as a Hashtable
– can put in arbitrary content, break rep invariant

From Javadoc:
Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised" Properties object
that contains a non-String key or value, the call will fail.

14CSE 331 Spring 2020

Solution: Composition

class Properties {
private Hashtable hashtable;

public void setProperty(String key, String value) {
hashtable.put(key,value);

}

public String getProperty(String key) {
return (String) hashtable.get(key);

}

…
}

Now, there are no get and put methods on Properties. (Best choice.)

15CSE 331 Spring 2020

You do not need to be a subclass
of every class whose code you want to use!

SUBTYPES VS SUBCLASSES

CSE 331 Spring 2020 16

Substitution principle for classes
If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
– anything provable about an A is provable about a B
– if an instance of subtype is treated purely as supertype (only

supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated

B is permitted to strengthen properties and add properties
– an overriding method must have a stronger (or equal) spec
– fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec
– no overriding method with a weaker spec
– no method removal

17CSE 331 Spring 2020

Substitution principle for methods
Constraints on methods

– For each supertype method, subtype must have such a method
• (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
– ask nothing extra of client (“weaker precondition”)

• requires clause is at most as strict as in supertype’s method
– guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the supertype method
• no new entries in modifies clause
• promise more (or the same) in returns & throws clauses

– cannot change return values or switch between return and throws

18CSE 331 Spring 2020

Spec strengthening: argument/result types

For method inputs:
– argument types in A’s foo could be

replaced with supertypes in B’s foo
– places no extra demand on the clients
– but Java does not have such overriding

• these are different methods in Java!

For method outputs:
– result type of A’s foo may be replaced by

a subtype in B’s foo
– no new exceptions (for values in the domain)
– existing exceptions can be replaced with subtypes

(none of this violates what client can rely on)

19

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE 331 Spring 2020

Java subtyping

• Java types:
– defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and
B implements A declarations

• In a Java subtype, each corresponding method has:
– same argument types

• if different, then overloading — unrelated methods
– compatible return types
– no additional declared exceptions

20CSE 331 Spring 2020

Java subtyping guarantees

A variable’s run-time type (i.e., the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error
If a variable of declared (compile-time) type T1 holds a
reference to an object of actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:
– objects always have implementations of the methods

specified by their declared type
– if all subtypes are true subtypes, then all objects meet the

specification of their declared type

Rules out a huge class of bugs
21CSE 331 Spring 2020

Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods
– have smaller requires
– have smaller modifies
– have stronger postconditions

• Java only checks the return type not the postcondition
• could compute a completely different function

– have stronger effects
– have stronger throws (& only for the same cases as before)
– have no new unchecked exceptions

22CSE 331 Spring 2020

DESIGNING FOR
INHERITANCE

CSE 331 Spring 2020 23

Inheritance can break encapsulation
public class InstrumentedHashSet<E>

extends HashSet<E> {
private int addCount = 0; // count # insertions
public InstrumentedHashSet(Collection<? extends E> c){

super(c);
}
public boolean add(E o) {

addCount++;
return super.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() { return addCount; }

}
24CSE 331 Spring 2020

Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s =

new InstrumentedHashSet<String>();
System.out.println(s.getAddCount());
s.addAll(Arrays.asList("CSE", "331"));
System.out.println(s.getAddCount());

• Answer depends on implementation of addAll in HashSet
– different implementations may behave differently!
– if HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:
– “adds all elements in the specified collection to this collection.”
– does not specify whether it calls add

• Lesson: subclassing typically requires designing for inheritance
– self-calls is not the only example… (more in future lectures)

// 0

// 4?!

25

Solutions

1. Change spec of HashSet
– indicate all self-calls
– less flexibility for implementers

2. Avoid spec ambiguity by avoiding self-calls
a) “re-implement” methods such as addAll

• more work
b) use composition not inheritance

• no longer a subtype (unless an interface is handy)
• bad for equality tests, callbacks, etc.

26CSE 331 Spring 2020

Solution: composition

public class InstrumentedHashSet<E> {
private final HashSet<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++; return s.add(o);
}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() { return addCount; }
// ... and every other method specified by HashSet<E>

}

The implementation
no longer matters

Delegate

27CSE 331 Spring 2020

Composition (wrappers, delegation)

Implementation reuse without inheritance

• Easy to reason about. Self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):
– does not preserve subtyping
– sometimes tedious to write
– may be hard to apply to equality tests, callbacks, etc.

• (although we already saw equals is hard for subclasses)

28CSE 331 Spring 2020

Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore
– so can't easily substitute it

• It may be a true subtype of HashSet
– but Java doesn't know that!
– Java requires declared relationships
– not enough just to meet specification

• Interfaces to the rescue
– can declare that we implement interface Set
– if such an interface exists

29CSE 331 Spring 2020

Interfaces reintroduce Java subtyping
public class InstrumentedHashSet<E> implements Set<E> {
private final Set<E> s = new HashSet<E>();
private int addCount = 0;
public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
}
public boolean add(E o) {

addCount++;
return s.add(o);

}
public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return s.addAll(c);

}
public int getAddCount() { return addCount; }
// ... and every other method specified by Set<E>

}

normal Java style

30CSE 331 Spring 2020

Interfaces and abstract classes

Provide interfaces for your functionality
– client code to interfaces rather than concrete classes
– allows different implementations later
– facilitates composition, wrapper classes

• basis of lots of useful, clever techniques
• we'll see more of these later

Consider also providing helper/template abstract classes
– makes writing new implementations much easier
– not necessary to use them to implement an interface, so

retain freedom to create radically different implementations

31CSE 331 Spring 2020

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>

implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>

extends AbstractCollection<E>
implements List<E>

// an old friend...
class ArrayList<E> extends AbstractList<E>

32CSE 331 Spring 2020

Why interfaces instead of classes?

Java design decisions:
– a class has exactly one superclass
– a class may implement multiple interfaces
– an interface may extend multiple interfaces

Observation:
– multiple superclasses are difficult to use and to implement
– multiple interfaces, single superclass gets most of the benefit

33CSE 331 Spring 2020

Pluses and minuses of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation
– a subclass may need to depend on unspecified details of the

implementation of its superclass
• e.g., pattern of self-calls

– subclass may need to evolve in tandem with superclass
• okay when implementation of both is under control of the

same programmer
– this is tricky to get right and is a source of subtle bugs

• Effective Java:
– either design for inheritance or else prohibit it
– favor composition (and interfaces) to inheritance

34CSE 331 Spring 2020

