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What is subtyping?

Sometimes “every B is an A”
— examples in a library database:
» every book is a library holding
« every CD is a library holding

T — >

For subtyping, “B is a subtype of A” means:

— “every object that satisfies the rules for a B
also satisfies the rules for an A’

— (B is a strengthening of A)
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Goal: code written using A's spec operates correctly if given a B
— plus: clarify design, share tests, (sometimes) share code
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Subtypes are substitutable

Subtypes are substitutable for supertypes
— Liskov substitution principle
— instances of subtype won't surprise client by failing to satisfy the
supertype's specification
— instances of subtype won't surprise client with more expectations
than the supertype's specification

We say B is a (frue) subtype of A if B has a stronger specification than A

— (or is equally strong)

— this is not the same as a Java subtype (e.g. subclass)

— Java subclasses that are not true subtypes: confusing & dangerous
 but unfortunately common ®
« Java allows casting sub- to supertypes assuming true subtypes
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Subtyping vs. subclassing

Substitution (subtype) is a matter of specifications

— B is a subtype of A iff an object of B can masquerade as an
object of A in any context

— B is a subtype if its spec is is a strengthening of A’s spec

Inheritance (subclass) is a matter of implementations
— factor out repeated code
— to create a new class, write only the differences

Java purposely merges these notions for classes:
— every subclass is a Java subtype
— but not necessarily a true subtype
— (though Java casting rules assume true subtypes)
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Inheritance makes adding functionality easy

Suppose we run a web store with a class for products...

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice() {
return price;
}
public int getTax() {
return (int) (getPrice() * 0.086);

}
}

... and we need a class for products that are on sale
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Copy and Paste

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice() {
return (int) (price*factor);
}
public int getTax() {
return (int) (getPrice() * 0.086) ;

}
}

Not a good choice. — Why? (hint: properties of high quality code)
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Inheritance makes small extensions small

Better:

class SaleProduct extends Product {
private float factor;
public int getPrice() {
return (int) (super.getPrice () *factor) ;

}
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Benefits of subclassing & inheritance

* Don't repeat unchanged fields and methods
— In implementation:
« simpler maintenance: fix bugs once (changeability)
— in specification:
* clients who understand the superclass specification need
only study novel parts of the subclass (readability)

» differences not buried under mass of similarities

— modularity: can ignore private fields and methods of superclass
(if properly designed)

 Ability to substitute new implementations (modularity)
— no client code changes required to use new subclasses
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Subclassing can be misused

« Poor design can produce subclasses that depend on many
implementation details of superclasses

— super- and sub-classes are often highly interdependent
(i.e., tightly coupled)
« Changes in superclasses can break subclasses
— “fragile base class problem”

« Subtyping and implementation inheritance are orthogonal!
— subclassing gives you both
— sometimes you want just one. instead use:
 Interfaces: subtyping without inheritance
« composition: use implementation without subtyping
— can seem less convenient, but often better long-term
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(NON-)EXAMPLES
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Is every square a rectangle?

interface Rectangle {
// effects: fits shape to given size:
// this,,s..width = w, this,,..height = h
void setSize(int w, int h);

}

interface Square extends Rectangle {..}

Which is the best option for Square’s setSize specification?

1.// effects: sets all edges to given size
void setSize (int edgelLength) ;
2. // requires: w=h
// effects: fits shape to given size
void setSize(int w, int h);
3.// effects: sets this.width and this.height to w
void setSize(int w, int h);
4. // effects: fits shape to given size

// throws BadSizeException if w !'= h
void setSize(int w, int h) throws BadSizeException;
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Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
— Rectangles are expected to have a width and height
that can be mutated independently
— Squares Vviolate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
— Squares are expected to have equal widths and heights
— Rectangles violate that expectation, could surprise client
Subtyping is not always intuitive
— but it forces clear thinking and prevents errors

Solutions:
— make them unrelated (or siblings)
— make them immutable!
* recovers elementary-school intuition
12
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Inappropriate subtyping in the JDK

class Hashtable {
public void put (Object key, Object wvalue) {..}

public Object get (Object key) {..}
}

// Keys and values are strings.
class Properties extends Hashtable {
public void setProperty (String key, String val) ({
put (key,val) ;

}
public String getProperty (String key) ({

return (String)get (key) ;
}

Properties p = new Properties() ;
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty ("One"); // crash!



Violation of rep invariant

Properties class has a simple rep invariant:
— keys and values are Strings

But client can treat Properties as a Hashtable
— can put in arbitrary content, break rep invariant

From Javadoc:

Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised” Properties object
that contains a non-String key or value, the call will falil.
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Solution: Composition

class Properties {
private Hashtable hashtable;

public void setProperty (String key, String value) ({
hashtable.put (key,value) ;

}

public String getProperty(String key) {
return (String) hashtable.get (key) ;

}

You do not need to be a subclass
} of every class whose code you want to use!

Now, there are no get and put methods on Properties. (Best choice.)
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SUBTYPES VS SUBCLASSES
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Substitution principle for classes

If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
— anything provable about an A is provable about a B

— if an instance of subtype is treated purely as supertype (only
supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated

B is permitted to strengthen properties and add properties
— an overriding method must have a stronger (or equal) spec
— fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec
— no overriding method with a weaker spec

— no method removal
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Substitution principle for methods

Constraints on methods
— For each supertype method, subtype must have such a method
* (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
— ask nothing extra of client (“weaker precondition”)
 requires clause is at most as strict as in supertype’s method
— guarantee at least as much (“stronger postcondition”)
* effects clause is at least as strict as in the supertype method
* No new entries in modifies clause

* promise more (or the same) in returns & throws clauses
— cannot change return values or switch between return and throws
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Spec strengthening: argument/result types

For method inputs:

— argument types in A’s foo could be
replaced with supertypes in B’s foo

— places no extra demand on the clients
— but Java does not have such overriding
 these are different methods in Java!

For method outputs:

— result type of A's foo may be replaced by
a subtype in B’s foo

— Nno new exceptions (for values in the domain)
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— existing exceptions can be replaced with subtypes
(none of this violates what client can rely on)
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Java subtyping

- Java types:
— defined by classes, interfaces, primitives

« Java subtyping stems from B extends A and
B implements A declarations

* |n a Java subtype, each corresponding method has:
— same argument types
« if different, then overloading — unrelated methods
— compatible return types
— no additional declared exceptions
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Java subtyping guarantees

A variable’s run-time type (i.e., the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error

If a variable of declared (compile-time) type T1 holds a
reference to an object of actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:

— objects always have implementations of the methods
specified by their declared type

— if all subtypes are true subtypes, then all objects meet the
specification of their declared type

Rules out a huge class of bugs
CSE 331 Spring 2020
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Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods

have smaller requires
have smaller modifies
have stronger postconditions
 Java only checks the return type not the postcondition
» could compute a completely different function
have stronger effects
have stronger throws (& only for the same cases as before)
have no new unchecked exceptions

CSE 331 Spring 2020
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DESIGNING FOR
INHERITANCE
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Inheritance can break encapsulation

public class InstrumentedHashSet<E>
extends HashSet<E> {
private int addCount = 0; // count # insertions
public InstrumentedHashSet (Collection<? extends E> c) {
super (c) ;
}
public boolean add(E o) {
addCount++;
return super.add (o) ;
}
public boolean addAll (Collection<? extends E> c) {
addCount += c.size () ;
return super.addall (c);

}
public int getAddCount() { return addCount; }
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Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>()
System.out.println (s.getAddCount()) ; // 0
s.addAll (Arrays.asList ("CSE", "331"));

System.out.println(s.getAddCount());, // 42!

« Answer depends on implementation of addAll in HashSet
— different implementations may behave differently!
— if HashSet's addAll calls add, then double-counting

« AbstractCollection’s addAll specification:

— “adds all elements in the specified collection to this collection.”
— does not specify whether it calls add
« Lesson: subclassing typically requires designing for inheritance

— self-calls is not the only example... (more in future lectures)
25



Solutions

1.

2.

Change spec of HashSet
— indicate all self-calls
— less flexibility for implementers

Avoid spec ambiguity by avoiding self-calls

a) “re-implement” methods such as addall
* more work

b) use composition not inheritance
* no longer a subtype (unless an interface is handy)
 bad for equality tests, callbacks, etc.
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Solution: composition

Delegate

public class InstrumentedHash {

private final HashSet<E> s = new HashSet<E>() ;

private int addCount = 0O;

public InstrumentedHashSet (Collection<? extends E> c) {

this.addAll (c) ;

}

public boolean add(E o) { _ _
addCount++; return s.add (o) ; The implementation

} no longer matters

public boolean addAll (Collec
addCount += c.siz
return s.addAXll(c);

extends E> c) {

}
public int getAddCount() { return addCount; }

// ... and every other method specified by HashSet<E>
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Composition (wrappers, delegation)

Implementation reuse without inheritance

Easy to reason about. Self-calls are irrelevant

Example of a “wrapper” class

Works around badly-designed / badly-specified classes

Disadvantages (may be worthwhile price to pay):
— does not preserve subtyping
— sometimes tedious to write
— may be hard to apply to equality tests, callbacks, etc.
* (although we already saw equals is hard for subclasses)
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Composition does not preserve subtyping

« InstrumentedHashSet is not a HashSet anymore
— so can't easily substitute it

* It may be a true subtype of HashSet

— but Java doesn't know that!
— Java requires declared relationships
— not enough just to meet specification

« Interfaces to the rescue
— can declare that we implement interface Set

— if such an interface exists
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normal Java style
typing

public class Instrument ashSet<E> implements Set<E> {
private final Set<E> s = new HashSet<E>() ;
private int addCount = 0O;
public InstrumentedHashSet (Collection<? extends E> c) {
this.addall (c) ;

Interfaces reintroduce J

}
public boolean add(E o) {

addCount++;
return s.add (o) ;

}
public boolean addAll (Collection<? extends E> c) {

addCount += c.size() ;
return s.addAll (c);

}
public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>
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Interfaces and abstract classes

Provide interfaces for your functionality
— client code to interfaces rather than concrete classes
— allows different implementations later
— facilitates composition, wrapper classes
* basis of lots of useful, clever techniques
« we'll see more of these later

Consider also providing helper/template abstract classes
— makes writing new implementations much easier

— not necessary to use them to implement an interface, so
retain freedom to create radically different implementations
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Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>
implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>
extends AbstractCollection<E>
implements List<E>
// an old friend...
class ArrayList<E> extends AbstractList<E>
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Why interfaces instead of classes?

Java design decisions:
— a class has exactly one superclass
— a class may implement multiple interfaces
— an interface may extend multiple interfaces

Observation:

— multiple superclasses are difficult to use and to implement
— multiple interfaces, single superclass gets most of the benefit
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Pluses and minuses of inheritance

* Inheritance is a powerful way to achieve code reuse

* |Inheritance can break encapsulation
— a subclass may need to depend on unspecified details of the
implementation of its superclass

* e.g., pattern of self-calls
— subclass may need to evolve in tandem with superclass
« okay when implementation of both is under control of the
same programmer
— this is tricky to get right and is a source of subtle bugs

« Effective Java:
— either design for inheritance or else prohibit it

— favor composition (and interfaces) to inheritance
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