CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020
Subtypes and Subclasses

What is subtyping?

Sometimes “every B is an A”
— examples in a library database:
» every book is a library holding
« every CD is a library holding

T — >

For subtyping, “B is a subtype of A” means:

— “every object that satisfies the rules for a B
also satisfies the rules for an A’

— (B is a strengthening of A)

LibraryHolding

L1

Book CD

Shape

I I

Circle | | Rhombus

Goal: code written using A's spec operates correctly if given a B
— plus: clarify design, share tests, (sometimes) share code

CSE 331 Spring 2020

Subtypes are substitutable

Subtypes are substitutable for supertypes
— Liskov substitution principle
— instances of subtype won't surprise client by failing to satisfy the
supertype's specification
— instances of subtype won't surprise client with more expectations
than the supertype's specification

We say B is a (frue) subtype of A if B has a stronger specification than A

— (or is equally strong)

— this is not the same as a Java subtype (e.g. subclass)

— Java subclasses that are not true subtypes: confusing & dangerous
 but unfortunately common ®
« Java allows casting sub- to supertypes assuming true subtypes

CSE 331 Spring 2020 3

Subtyping vs. subclassing

Substitution (subtype) is a matter of specifications

— B is a subtype of A iff an object of B can masquerade as an
object of A in any context

— B is a subtype if its spec is is a strengthening of A’s spec

Inheritance (subclass) is a matter of implementations
— factor out repeated code
— to create a new class, write only the differences

Java purposely merges these notions for classes:
— every subclass is a Java subtype
— but not necessarily a true subtype
— (though Java casting rules assume true subtypes)

CSE 331 Spring 2020

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products...

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice() {
return price;
}
public int getTax() {
return (int) (getPrice() * 0.086);

}
}

... and we need a class for products that are on sale
CSE 331 Spring 2020

Copy and Paste

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice() {
return (int) (price*factor);
}
public int getTax() {
return (int) (getPrice() * 0.086) ;

}
}

Not a good choice. — Why? (hint: properties of high quality code)

CSE 331 Spring 2020

Inheritance makes small extensions small

Better:

class SaleProduct extends Product {
private float factor;
public int getPrice() {
return (int) (super.getPrice () *factor) ;

}

CSE 331 Spring 2020

Benefits of subclassing & inheritance

* Don't repeat unchanged fields and methods
— In implementation:
« simpler maintenance: fix bugs once (changeability)
— in specification:
* clients who understand the superclass specification need
only study novel parts of the subclass (readability)

» differences not buried under mass of similarities

— modularity: can ignore private fields and methods of superclass
(if properly designed)

 Ability to substitute new implementations (modularity)
— no client code changes required to use new subclasses

CSE 331 Spring 2020 8

Subclassing can be misused

« Poor design can produce subclasses that depend on many
implementation details of superclasses

— super- and sub-classes are often highly interdependent
(i.e., tightly coupled)
« Changes in superclasses can break subclasses
— “fragile base class problem”

« Subtyping and implementation inheritance are orthogonal!
— subclassing gives you both
— sometimes you want just one. instead use:
 Interfaces: subtyping without inheritance
« composition: use implementation without subtyping
— can seem less convenient, but often better long-term

CSE 331 Spring 2020 9

(NON-)EXAMPLES

CSE 331 Spring 2020

10

Is every square a rectangle?

interface Rectangle {
// effects: fits shape to given size:
// this,,s..width = w, this,,..height = h
void setSize(int w, int h);

}

interface Square extends Rectangle {..}

Which is the best option for Square’s setSize specification?

1.// effects: sets all edges to given size
void setSize (int edgelLength) ;
2. // requires: w=h
// effects: fits shape to given size
void setSize(int w, int h);
3.// effects: sets this.width and this.height to w
void setSize(int w, int h);
4. // effects: fits shape to given size

// throws BadSizeException if w !'= h
void setSize(int w, int h) throws BadSizeException;

CSE 331 Spring 2020 11

Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
— Rectangles are expected to have a width and height
that can be mutated independently
— Squares Vviolate that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
— Squares are expected to have equal widths and heights
— Rectangles violate that expectation, could surprise client
Subtyping is not always intuitive
— but it forces clear thinking and prevents errors

Solutions:
— make them unrelated (or siblings)
— make them immutable!
* recovers elementary-school intuition
12

CSE 331 Spring 2020

Inappropriate subtyping in the JDK

class Hashtable {
public void put (Object key, Object wvalue) {..}

public Object get (Object key) {..}
}

// Keys and values are strings.
class Properties extends Hashtable {
public void setProperty (String key, String val) ({
put (key,val) ;

}
public String getProperty (String key) ({

return (String)get (key) ;
}

Properties p = new Properties() ;
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty ("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
— keys and values are Strings

But client can treat Properties as a Hashtable
— can put in arbitrary content, break rep invariant

From Javadoc:

Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised” Properties object
that contains a non-String key or value, the call will falil.

CSE 331 Spring 2020 14

Solution: Composition

class Properties {
private Hashtable hashtable;

public void setProperty (String key, String value) ({
hashtable.put (key,value) ;

}

public String getProperty(String key) {
return (String) hashtable.get (key) ;

}

You do not need to be a subclass
} of every class whose code you want to use!

Now, there are no get and put methods on Properties. (Best choice.)

CSE 331 Spring 2020 15

SUBTYPES VS SUBCLASSES

CSE 331 Spring 2020

16

Substitution principle for classes

If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
— anything provable about an A is provable about a B

— if an instance of subtype is treated purely as supertype (only
supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated

B is permitted to strengthen properties and add properties
— an overriding method must have a stronger (or equal) spec
— fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec
— no overriding method with a weaker spec

— no method removal
CSE 331 Spring 2020 17

Substitution principle for methods

Constraints on methods
— For each supertype method, subtype must have such a method
* (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
— ask nothing extra of client (“weaker precondition”)
 requires clause is at most as strict as in supertype’s method
— guarantee at least as much (“stronger postcondition”)
* effects clause is at least as strict as in the supertype method
* No new entries in modifies clause

* promise more (or the same) in returns & throws clauses
— cannot change return values or switch between return and throws

CSE 331 Spring 2020 18

Spec strengthening: argument/result types

For method inputs:

— argument types in A’s foo could be
replaced with supertypes in B’s foo

— places no extra demand on the clients
— but Java does not have such overriding
 these are different methods in Java!

For method outputs:

— result type of A's foo may be replaced by
a subtype in B’s foo

— Nno new exceptions (for values in the domain)

A

1

B

LibraryHolding

:

Book

1

CD

Shape

5

5

Circle

Rhombus

— existing exceptions can be replaced with subtypes
(none of this violates what client can rely on)

CSE 331 Spring 2020

19

Java subtyping

- Java types:
— defined by classes, interfaces, primitives

« Java subtyping stems from B extends A and
B implements A declarations

* |n a Java subtype, each corresponding method has:
— same argument types
« if different, then overloading — unrelated methods
— compatible return types
— no additional declared exceptions

CSE 331 Spring 2020

20

Java subtyping guarantees

A variable’s run-time type (i.e., the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error

If a variable of declared (compile-time) type T1 holds a
reference to an object of actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:

— objects always have implementations of the methods
specified by their declared type

— if all subtypes are true subtypes, then all objects meet the
specification of their declared type

Rules out a huge class of bugs
CSE 331 Spring 2020

21

Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods

have smaller requires
have smaller modifies
have stronger postconditions
 Java only checks the return type not the postcondition
» could compute a completely different function
have stronger effects
have stronger throws (& only for the same cases as before)
have no new unchecked exceptions

CSE 331 Spring 2020

22

DESIGNING FOR
INHERITANCE

CSE 331 Spring 2020

23

Inheritance can break encapsulation

public class InstrumentedHashSet<E>
extends HashSet<E> {
private int addCount = 0; // count # insertions
public InstrumentedHashSet (Collection<? extends E> c) {
super (c) ;
}
public boolean add(E o) {
addCount++;
return super.add (o) ;
}
public boolean addAll (Collection<? extends E> c) {
addCount += c.size () ;
return super.addall (c);

}
public int getAddCount() { return addCount; }

CSE 331 Spring 2020 24

Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>()
System.out.println (s.getAddCount()) ; // 0
s.addAll (Arrays.asList ("CSE", "331"));

System.out.println(s.getAddCount());, // 42!

« Answer depends on implementation of addAll in HashSet
— different implementations may behave differently!
— if HashSet's addAll calls add, then double-counting

« AbstractCollection’s addAll specification:

— “adds all elements in the specified collection to this collection.”
— does not specify whether it calls add
« Lesson: subclassing typically requires designing for inheritance

— self-calls is not the only example... (more in future lectures)
25

Solutions

1.

2.

Change spec of HashSet
— indicate all self-calls
— less flexibility for implementers

Avoid spec ambiguity by avoiding self-calls

a) “re-implement” methods such as addall
* more work

b) use composition not inheritance
* no longer a subtype (unless an interface is handy)
 bad for equality tests, callbacks, etc.

CSE 331 Spring 2020

26

Solution: composition

Delegate

public class InstrumentedHash {

private final HashSet<E> s = new HashSet<E>() ;

private int addCount = 0O;

public InstrumentedHashSet (Collection<? extends E> c) {

this.addAll (c) ;

}

public boolean add(E o) { _ _
addCount++; return s.add (o) ; The implementation

} no longer matters

public boolean addAll (Collec
addCount += c.siz
return s.addAXll(c);

extends E> c) {

}
public int getAddCount() { return addCount; }

// ... and every other method specified by HashSet<E>

CSE 331 Spring 2020 27

Composition (wrappers, delegation)

Implementation reuse without inheritance

Easy to reason about. Self-calls are irrelevant

Example of a “wrapper” class

Works around badly-designed / badly-specified classes

Disadvantages (may be worthwhile price to pay):
— does not preserve subtyping
— sometimes tedious to write
— may be hard to apply to equality tests, callbacks, etc.
* (although we already saw equals is hard for subclasses)

CSE 331 Spring 2020 28

Composition does not preserve subtyping

« InstrumentedHashSet is not a HashSet anymore
— so can't easily substitute it

* It may be a true subtype of HashSet

— but Java doesn't know that!
— Java requires declared relationships
— not enough just to meet specification

« Interfaces to the rescue
— can declare that we implement interface Set

— if such an interface exists

CSE 331 Spring 2020 29

normal Java style
typing

public class Instrument ashSet<E> implements Set<E> {
private final Set<E> s = new HashSet<E>() ;
private int addCount = 0O;
public InstrumentedHashSet (Collection<? extends E> c) {
this.addall (c) ;

Interfaces reintroduce J

}
public boolean add(E o) {

addCount++;
return s.add (o) ;

}
public boolean addAll (Collection<? extends E> c) {

addCount += c.size() ;
return s.addAll (c);

}
public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>

} CSE 331 Spring 2020 30

Interfaces and abstract classes

Provide interfaces for your functionality
— client code to interfaces rather than concrete classes
— allows different implementations later
— facilitates composition, wrapper classes
* basis of lots of useful, clever techniques
« we'll see more of these later

Consider also providing helper/template abstract classes
— makes writing new implementations much easier

— not necessary to use them to implement an interface, so
retain freedom to create radically different implementations

CSE 331 Spring 2020 31

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>
implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>
extends AbstractCollection<E>
implements List<E>
// an old friend...
class ArrayList<E> extends AbstractList<E>

CSE 331 Spring 2020

32

Why interfaces instead of classes?

Java design decisions:
— a class has exactly one superclass
— a class may implement multiple interfaces
— an interface may extend multiple interfaces

Observation:

— multiple superclasses are difficult to use and to implement
— multiple interfaces, single superclass gets most of the benefit

CSE 331 Spring 2020 33

Pluses and minuses of inheritance

* Inheritance is a powerful way to achieve code reuse

* |Inheritance can break encapsulation
— a subclass may need to depend on unspecified details of the
implementation of its superclass

* e.g., pattern of self-calls
— subclass may need to evolve in tandem with superclass
« okay when implementation of both is under control of the
same programmer
— this is tricky to get right and is a source of subtle bugs

« Effective Java:
— either design for inheritance or else prohibit it

— favor composition (and interfaces) to inheritance

CSE 331 Spring 2020 34

