
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020
Debugging

A Bug’s Life

defect – mistake committed by a human

error – incorrect computation

failure – visible error: program violates its specification

Debugging starts when a failure is observed
Unit testing
Integration testing
In the field

Goal of debugging is to go from failure back to defect

2CSE 331 Spring 2020

Bug Removal

Tools, Inspection, & Testing
– increase confidence that the code is correct
– uncover problems by running the code

Defensive programming
– lay traps as you code to catch bugs when run

Debugging
– find out why a program is not functioning as intended

Testing ≠ debugging
– test: reveals existence of problem
– debug: pinpoint location & cause of problem
– debugging is often painful, testing is not

3CSE 331 Spring 2020

Defence in depth
Levels of defence:

1. Make errors impossible
– examples: Java prevents type errors, memory corruption

Python prevents key mutation

2. Don’t introduce defects
– “get things right the first time” (by reasoning & unit testing)

3. Make errors immediately visible (often by defensive programming)
– examples: assertions, checkRep
– reduce distance from error to failure

4CSE 331 Spring 2020

(subtle bugs like key mutations are hard to find
because of the distance between error and failure)

First defense: Impossible by design
In the language

– Java prevents type mismatches, memory overwrite bugs;
guaranteed sizes of numeric types, …

In the protocols/libraries/modules
– TCP/IP guarantees data is not reordered
– BigInteger guarantees there is no overflow

In self-imposed conventions
– immutable data structure guarantees behavioral equality
– finally block can prevent a resource leak
Caution: You must maintain discipline

5CSE 331 Spring 2020

Second defense: Correctness
Get things right the first time

– think before you code (don’t code before you think!)
– if you're making lots of easy-to-find defects,

you're probably also making hard-to-find defects

Especially important when debugging is going to be hard
– concurrency, real-time environment, no access to customer

environment, etc.
– (formalism gets more important as the problems get harder)

The key techniques are everything we have been learning:
– forward & backward reasoning
– clear and complete specs
– these techniques lead to simpler software

6CSE 331 Spring 2020

Strive for simplicity

“There are two ways of constructing a software
design:

One way is to make it so simple that there
are obviously no deficiencies, and
the other way is to make it so complicated
that there are no obvious deficiencies.

The first method is far more difficult.”

“Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition,
not smart enough to debug it.”

Sir Anthony Hoare

Brian Kernighan

7CSE 331 Spring 2020

Second defence: Correctness

Find errors by testing before you check in the code:

Unit testing: when you test a module in isolation, any failure is
due to a defect in that unit (or the test driver)

Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed (or the new code is
triggering a bug that hadn’t been observed before)

Test early and often. More tests is almost never a bad thing.

8CSE 331 Spring 2020

Third defence: Immediate visibility

If we can't prevent errors, we can try to spot them early

Assertions (e.g., checkRep): check at runtime that the program
is in the state that we are expecting.

Assertions make more sense for server code
– Google policy (8+ years ago) on servers:

• assertions always enabled
• if any failure is detected, crash the program

– Microsoft policy (20+ years ago) on clients:
• try to recover from failures. hide them from the user

9CSE 331 Spring 2020

Benefits of immediate visibility

Failure is likely to be closer to the defect
– failure can occur far from the mistake that caused it
– immediate visibility reduces the search time to find the defect

Defect is less likely to have infected other parts of the program
– the longer we wait, the more code we’ll likely have to change

Don’t program in ways that hide errors
– this lengthens distance between defect and failure
– (only exception is when running on the client’s computer)

10CSE 331 Spring 2020

Don't hide errors

// requires: x must be present in A
int i = 0;
while (true) {
if (A[i] == x) break;
i++;

}

This code fragment searches an array A for a value x
– value is guaranteed to be in the array
– what if that guarantee is broken (by a defect)?

11CSE 331 Spring 2020

Don't hide errors

// requires: x must be present in a
int i = 0;
while (i < A.length) {
if (A[i] == x) break;
i++;

}

Fixes the bug so the loop always exits
– but no longer guaranteed that A[i] == x
– if other code relies on this, then problems arise later

• this just hides the bug!

12CSE 331 Spring 2020

Don't hide errors

// requires: x must be present in a
int i = 0;
while (i < A.length) {
if (A[i] == x) break;
i++;

}
assert i != A.length : "key not found";

• Assertions let us document and check invariants at run time
• Abort/debug program as soon as problem is detected

– turn an error into a failure
• Unfortunately, we may still be a long distance from the defect

– the defect is what caused x not to be in the array
13CSE 331 Spring 2020

Last resort: debugging

Defects happen
– people are imperfect
– industry average (?): 10 defects per 1000 lines of code

Defects are often not immediately clear from the failure
That means…

14CSE 331 Spring 2020

Basic Debugging

Work through the following steps:

step 1 – Clarify symptom (simplify input), create “minimal” test
step 2 – Localize and understand cause
step 3 – Fix the defect
step 4 – Rerun all tests, old and new

15CSE 331 Spring 2020

The debugging process

step 1: find (small) repeatable test case that produces the failure
– smaller test case will make step 2 easier
– do not start step 2 until you have a repeatable test

step 2: narrow down location and cause
– loop: (a) study the data (b) hypothesize (c) experiment
– experiments often involve changing the code
– do not start step 3 until you understand the cause

step 3: fix the defect
– is it a simple typo or a design flaw?
– does it occur elsewhere in the code?

step 4: run all the tests (including the new one)
– is this failure fixed? are any other new failures introduced?

16CSE 331 Spring 2020

Debugging and the scientific method

• Debugging should be systematic
– carefully decide what to do

• don’t flail about randomly!
– may help to keep a record of what you tried
– don’t get sucked into fruitless avenues

• Use an iterative scientific process:

17CSE 331 Spring 2020

Formulate a hypothesis

Design an experiment

Perform an experiment

Interpret results

Example

//returns true iff sub is a substring of full
//(i.e. iff there exists A,B such that full=A+sub+B)
boolean contains(String full, String sub);

User bug report:
It can't find the string "very happy" within:

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all."

Poor responses:
– See accented characters, panic about not knowing about

Unicode, begin unorganized web searches and inserting poorly
understood library calls, …

– Start tracing the execution of this example
Better response: simplify/clarify the symptom…

18CSE 331 Spring 2020

Reducing input size

Find a simple test case by divide-and-conquer

Pare test down:
Can not find "very happy" within

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all."
"I am very very happy to see you all."
"very very happy"

Can find "very happy" within
"very happy"

Can not find "ab" within "aab"

19CSE 331 Spring 2020

General strategy: simplify

Find simplest input that will provoke failure
– usually not the input that revealed existence of the defect

Start with data that revealed the defect
– keep paring it down (binary search can help!)
– sometimes leads directly to an understanding of the cause

When not dealing with just one method call:
– “test input” is the set of steps that reliably trigger the failure
– same basic idea

20CSE 331 Spring 2020

Localizing a defect

Sometimes you can take advantage of modularity
– start with everything, take away pieces until failure goes away
– start with nothing, add pieces back in until failure appears

Binary search speeds up this process too
– error happens somewhere between first and last statement
– do binary search on that ordered set of statements

• is the state correct after the middle statement?

21CSE 331 Spring 2020

Binary search on buggy code
public class MotionDetector {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate

result
at half-way point

22CSE 331 Spring 2020

Binary search on buggy code
public class MotionDetector {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate

result
at half-way point

23CSE 331 Spring 2020

Detecting Bugs in the Real World

Real systems
– large and complex
– collection of modules, written by multiple people
– complex input
– many external interactions
– non-deterministic

Replication can be an issue
– infrequent failure (the worst)
– instrumentation eliminates the failure (the worst of the worst)

Defects cross abstraction barriers
Large time lag from corruption (defect) to detection (failure)

24CSE 331 Spring 2020

Debugging In Harsh Environments

Failure is non-deterministic,
difficult to reproduce

Can’t print or use debugger

Can’t change timing of
program (or defect/failure
depends on timing)

Such bugs are more
common when users are
your testers!

25CSE 331 Spring 2020

Heisenbugs

In a sequential, deterministic program, failure is repeatable
But the real world is not that nice…

– continuous input/environment changes
– concurrency and parallelism
– failure occurs randomly

• literally depends on results of random-number generation

Common for debugging because...
– these are most likely bugs to sneak past reasoning & testing

Bugs hard to reproduce when:
– use of debugger or assertions makes failure goes away

• due to timing or assertions having side-effects
– only happens when under heavy load
– only happens once in a while

26CSE 331 Spring 2020

Logging Events

Log (record) events during execution as program runs (at full speed)

Examine logs to help reconstruct the past
– particularly on failing runs
– and/or compare failing and non-failing runs

The log may be all you know about a customer’s environment
– (some amount of logging is fairly standard)
– needs to tell you enough to reproduce the failure

27CSE 331 Spring 2020

More Tricks for Hard Bugs

Rebuild system from scratch
– bug could be in your build system or persistent data structures

Explain the problem to a friend (or to a rubber duck)
– The Pragmatic Programmer calls this “rubber ducking”

Make sure that you have correct source code
– check out fresh copy from repository; recompile everything

Make sure it is a bug
– program may be working correctly!

28CSE 331 Spring 2020

More Tricks for Hard Bugs

Rebuild system from scratch
– bug could be in your build system or persistent data structures

Explain the problem to a friend (or to a rubber duck)
– The Pragmatic Programmer calls this “rubber ducking”

Make sure that you have correct source code
– check out fresh copy from repository; recompile everything

Make sure it is a bug
– program may be working correctly!

And things we already know:

– minimize input required to exercise bug (exhibit failure)
– add more checks to the program
– add more logging

29CSE 331 Spring 2020

Where is the defect?
The defect is not where you think it is (or else you’d have found it)

– ask yourself where it can not be; explain why

Look for simple easy-to-overlook mistakes first, e.g.,
– reversed order of arguments:

Collections.copy(src, dest);
– spelling of identifiers: int hashcode()

@Override can help catch method name typos
– same object vs. equal: a == b versus a.equals(b)
– deep vs. shallow copy

30CSE 331 Spring 2020

When the going gets tough

Reconsider assumptions
– e.g., has the OS changed? Is there room on the hard drive?

Is it a leap year? 2 full moons in the month?
– debug the code, not the comments

• ensure that comments and specs describe the code
Start documenting your system

– gives a fresh angle, and highlights area of confusion
Get help

– we all develop blind spots
– explaining the problem often helps (even to rubber duck)

Walk away
– sleep! often you can’t see the problem because you’re too tired
– one good reason to start early

31CSE 331 Spring 2020

Summary

• Debugging occurs when tools & inspection fail to catch a bug

• Debugging is the search from a failure back to the defect
– defect = the actual bug, somewhere in the code
– failure = bad effects from the bug becoming visible to users

(crash, error message, incorrect result, etc.)

• Debugging can be hours (or even days!) of frustrating work
– bugs that get past tools & inspection are usually the most subtle

CSE 331 Winter 2019 32

Advice

Use assertions (& checkRep) to make failures visible ASAP
– reduces the work in debugging
– shortens the search from failure to defect

Debugging should be a systematic process
– use the scientific method

Understand the source of defects
– find similar ones and prevent them in the future

33CSE 331 Spring 2020

