CSE 331 Software Design & Implementation

Kevin Zatloukal
Spring 2020
Exceptions and Assertions

Outline

- General concepts about dealing with errors and failures
- Assertions: what, why, how
 - for things you believe will/should never happen
- Exceptions: what, how
 - how to throw, catch, and declare exceptions in Java
 - subtyping of exceptions
 - checked vs. unchecked exceptions
- Exceptions: why in general
 - for things you believe are bad and should rarely happen
 - and many other style issues
- Alternative with trade-offs: Returning special values
- Summary and review

Not all "errors" should be failures

Some "error" cases:

- 1. Misuse of your code
 - e.g., precondition violation
 - should be a failure (i.e., made visible to the user)
- 2. Errors in your code vs reasoning
 - e.g., representation invariant fails to hold
 - should be a failure
- 3. Unexpected resource problems
 - e.g., missing file, server offline, ...
 - not an error in the sense of earlier lecture (... these are not bugs)
 - should not be a failure (i.e., do try to recover)

What to do when failing

Fail fast and fail friendly

Goal 1: Prevent harm

- stop before anything worse happens
- (do still need to perform cleanup: close open resources etc.)

Goal 2: Give information about the problem

- failing quickly helps localize the defect
- a good error message is important for debugging

Errors that should be failures

A precondition prohibits misuse of your code

weakens the spec by throwing out unhandled cases

This ducks the problem of errors-will-happen

with enough clients, someone will use your code incorrectly

Practice defensive programming:

- usually makes sense to check for these errors
- even though you don't specify what the behavior will be, it still makes sense to fail fast

Outline

- General concepts about dealing with errors and failures
- Assertions: what, why, how
 - for things you believe will/should never happen
- Exceptions: what, how
 - how to throw, catch, and declare exceptions in Java
 - subtyping of exceptions
 - checked vs. unchecked exceptions
- Exceptions: why in general
 - for things you believe are bad and should rarely happen
 - and many other style issues
- Alternative with trade-offs: Returning special values
- Summary and review

Defensive programming

Assertions about your code:

precondition, postcondition, representation invariant, etc.

Check these *statically* via reasoning and tools

Check these *dynamically* via assertions

- throws AssertionError if condition is false
- includes descriptive messages

Enabling assertions

In Java, assertions can be enabled or disabled at runtime (no recompile is required)

Command line:

java -ea runs code with assertions enabledjava runs code with assertions disabled (default)

Eclipse:

Select Run > Run Configurations... then add -ea to VM arguments under (x)=arguments tab

Turn them off only in **rare** circumstances (e.g., production code running on a client machine)

How not to use assertions

Don't clutter the code with useless assertions

```
x = y + 1;
assert x == y + 1; // the compiler worked!
```

- Too many assertions can make the code hard to read
- Be judicious about where you include them. Good choices:
 - preconditions & postconditions
 - invariants of non-trivial loops
 - representation invariants after mutations

How *not* to use assertions

Don't perform side effects:

```
assert list.remove(x); // won't happen if disabled
// better:
boolean found = list.remove(x);
assert found;
```

assert and checkRep()

CSE 331's checkRep () is another dynamic check

Strategy: use assert in checkRep() to test and fail with meaningful message if trouble found

CSE 331 tests will check that assertions are enabled

Easy to forget to enable them in your own projects

Google doesn't use them for this reason

Expensive checkRep () tests

Detailed checks can be too slow in production

especially if asymptotically slower than code being checked

But complex tests can be very helpful during testing & debugging (let the computer find problems for you!)

Suggested strategy for checkRep:

- create a static, global "debug" or "debugLevel" variable
- run expensive tests when this is enabled
- turn it on during unit tests
 - can use JUnit's @Before for this

Square root

```
// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
   ...
}
```

Square root with assertion

```
// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
   assert x >= 0.0;
   double result;
   ... compute result ...
   assert Math.abs(result*result - x) < .0001;
   return result;
}</pre>
```

These two assertions serve different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in this lecture as examples.)

Outline

- General concepts about dealing with errors and failures
- Assertions: what, why, how
 - for things you believe will/should never happen
- Exceptions: what, how
 - how to throw, catch, and declare exceptions in Java
 - subtyping of exceptions
 - checked vs. unchecked exceptions
- Exceptions: why in general
 - for things you believe are bad and should rarely happen
 - and many other style issues
- Alternative with trade-offs: Returning special values
- Summary and review

Square root, specified for all inputs

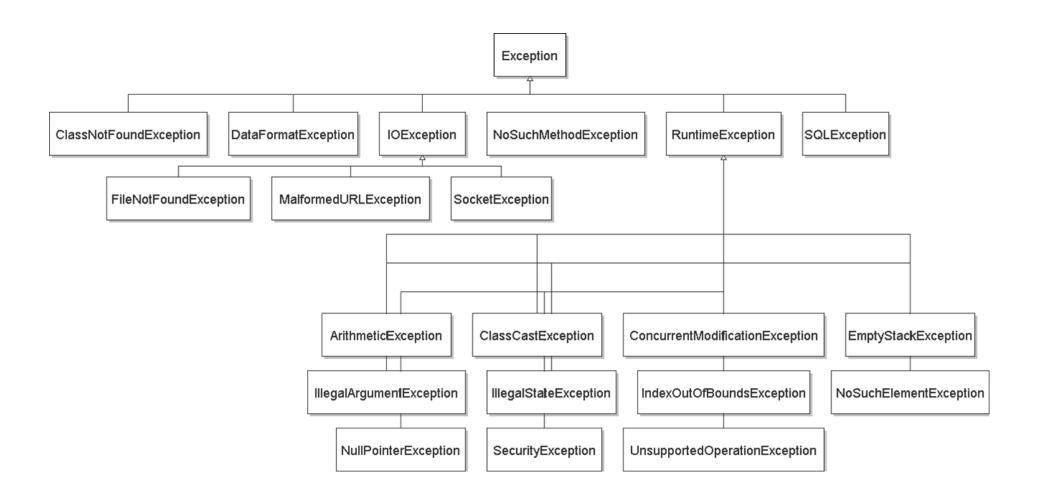
```
// throws: NegativeArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)
    throws NegativeArgumentException {
    if (x < 0)
        throw new NegativeArgumentException();
    ...
}</pre>
```

- throws is part of a method signature: "it might happen"
 - comma-separated list
 - like @modifies, promises are in what is not listed
- throw is a statement that actually causes exception-throw
 - immediate control transfer [like return but different]

Using try-catch to handle exceptions

```
public double sqrt(double x)
    throws NegativeArgumentException
...
Client code:

try {
  y = sqrt(...);
    ... other statements ...
} catch (NegativeArgumentException e) {
  e.printStackTrace(); // or other actions
}
```


- Handled by nearest dynamically enclosing try/catch
 - top-level default handler: print stack trace & crash

Catching with inheritance

```
try {
  code...
} catch (FileNotFoundException fnfe) {
  code to handle a file not found exception
} catch (IOException ioe) {
  code to handle any other I/O exception
} catch (Exception e) {
  code to handle any other exception
}
```

- A SocketException would match the second block
- An ArithmeticException would match the third block
- (Subsequent catch blocks need not be supertypes like this)

(Abridged) Exception Hierarchy

Java's checked/unchecked distinction

Checked exceptions (style: for special cases / abnormal cases)

- callee must declare in signature (else type error)
- client must either catch or declare (else type error)
 - even if you can prove it will never happen at run time, the type system does not "believe you"
- guaranteed to be a matching enclosing catch at runtime

Unchecked exceptions (style: for never-expected)

- library has no need to declare
- client has no need to catch
- these are subclasses of:

• RuntimeException
• Error (rarely caught)

Checked

Throwable

Exception

Error

Runtime

Exception

Checked

Runtime

exceptions

Exception

Outline

- General concepts about dealing with errors and failures
- Assertions: what, why, how
 - for things you believe will/should never happen
- Exceptions: what, how
 - how to throw, catch, and declare exceptions in Java
 - subtyping of exceptions
 - checked vs. unchecked exceptions
- Exceptions: why in general
 - for things you believe are bad and should rarely happen
 - and many other style issues
- Alternative with trade-offs: Returning special values
- Summary and review

Two distinct uses of exceptions

- Errors that should be failures
 - unexpected (ideally, should not happen at all)
 - should be rare with high quality client and library
 - can be the client's fault or the library's
 - often unrecoverable
- Special cases (a.k.a. exceptional cases)
 - expected, just not the common case
 - possibly unpredictable or unpreventable by client

Handling exceptions

- Errors that should be failures
 - usually can't recover
 - unchecked exceptions the better choice (avoids much work)
 - if condition not checked, exception propagates up the stack
 - top-level handler prints the stack trace
- Special cases
 - take special action and continue computing
 - should always check for this condition
 - should handle locally by code that knows how to continue
 - checked exceptions the better choice

Checked vs. unchecked

- No perfect answer to the question "should clients be forced to catch (or declare they throw) this exception?"
 - Java provided both options
- Advantages to checked exceptions:
 - Static checking of callee: only declared exceptions are thrown
 - Static checking of caller: exception is caught or declared
- Disadvantages:
 - impedes implementations and overrides (can't add exceptions)
 - prevents truly giving no promises when @requires is false
 - often in your way when prototyping
 - have to catch or declare even if the exception is not possible

Propagating an exception

```
// returns: x such that ax^2 + bx + c = 0
// throws: NegativeArgumentException if no real soln exists
double solveQuad(double a, double b, double c)
    throws NegativeArgumentException {
    // No need to catch exception thrown by sqrt
    return (-b + sqrt(b*b - 4*a*c)) / (2*a);
}
```

Aside: does "negative argument" make sense to the caller?

Why catch exceptions locally?

Problems:

- 1. Failure to catch exceptions often violates modularity
 - call chain: A -> IntSet.insert -> IntList.insert
 - IntList.insert throws some exception
 - implementer of IntSet.insert knows how list is being used
 - implementer of A may not even know that IntList exists
- 2. Possible that a method on the stack may think that it is handling an exception raised by a different call

Alternative: catch it and throw again

- "chaining" or "translation"
- do this even if the exception is better handled up a level
- makes it clear to reader of code that it was not an omission.

Exception translation

```
// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)
                             throws NotRealException {
  try {
    return (-b + sqrt(b*b - 4*a*c)) / (2*a);
  } catch (NegativeArgumentException e) {
    throw new NotRealException(); // "chaining"
class NotRealException extends Exception {
 NotRealException() { super(); }
 NotRealException(String message) { super(message); }
 NotRealException(Throwable cause) { super(cause); }
 NotRealException(String msg, Throwable c) { super(msg, c); }
```

Don't ignore exceptions

Effective Java Tip: Don't ignore exceptions

Empty catch block is poor style

sometimes okay inside of an exception handler

```
try {
  readFile(filename);
} catch (IOException e) {} // silent failure
```

At a minimum, print out the exception so you know it happened

and exit if that's appropriate for the application

```
} catch (IOException e) {
  e.printStackTrace();
  System.exit(1);
}
```

Outline

- General concepts about dealing with errors and failures
- Assertions: what, why, how
 - for things you believe will/should never happen
- Exceptions: what, how in Java
 - how to throw, catch, and declare exceptions
 - subtyping of exceptions
 - checked vs. unchecked exceptions
- Exceptions: why in general
 - for things you believe are bad and should rarely happen
 - and many other style issues
- Alternative with trade-offs: Returning special values
- Summary and review

Informing the client of a problem

Special value:

- null for Map.get
- -1 for indexOf
- NaN for sqrt of negative number

Advantages:

can be less verbose than try/catch machinery

Disadvantages:

- error-prone: callers forget to check, forget spec, etc.
- need "extra" result: doesn't work if every result could be real
 - example: if a map could store null keys
- has to be propagated manually one call at a time

General Java style advice: exceptions for exceptional conditions

Outline

- General concepts about dealing with errors and failures
- Assertions: what, why, how
 - For things you believe will/should never happen
- Exceptions: what, how in Java
 - How to throw, catch, and declare exceptions
 - Subtyping of exceptions
 - Checked vs. unchecked exceptions
- Exceptions: why in general
 - For things you believe are bad and should rarely happen
 - And many other style issues
- Alternative with trade-offs: Returning special values
- Summary and review

Exceptions: review

Use an assertion for internal consistency checks that should not fail

when checking at runtime is possible

Use only a precondition when

- used in a context in which calls can be checked via reasoning
- but checking at runtime would be prohibitive
 - e.g., requiring that a list be sorted

Use an exception when

- used in a dynamic / unpredictable context (client can't predict)
- for exceptional cases only

Use a special value when

- it is a common case (not really exceptional)
- clients are likely (?) to remember to check for it

Exceptions: review, continued

Use *checked* exceptions most of the time

static checking is helpful! (tools, inspection, & testing)

Avoid checked exceptions if there is probably no way to recover

Handle exceptions sooner rather than later

Good reference: Effective Java chapter

a whole chapter: exception-handling design matters!