
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Exceptions and Assertions

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2020 2

Not all “errors” should be failures

Some “error” cases:

1. Misuse of your code
– e.g., precondition violation
– should be a failure (i.e., made visible to the user)

2. Errors in your code vs reasoning
– e.g., representation invariant fails to hold
– should be a failure

3. Unexpected resource problems
– e.g., missing file, server offline, …
– not an error in the sense of earlier lecture (... these are not bugs)
– should not be a failure (i.e., do try to recover)

3CSE 331 Spring 2020

What to do when failing

Fail fast and fail friendly

Goal 1: Prevent harm
– stop before anything worse happens
– (do still need to perform cleanup: close open resources etc.)

Goal 2: Give information about the problem
– failing quickly helps localize the defect
– a good error message is important for debugging

4CSE 331 Spring 2020

Errors that should be failures

A precondition prohibits misuse of your code
– weakens the spec by throwing out unhandled cases

This ducks the problem of errors-will-happen
– with enough clients, someone will use your code incorrectly

Practice defensive programming:
– usually makes sense to check for these errors
– even though you don’t specify what the behavior will be,

it still makes sense to fail fast

5CSE 331 Spring 2020

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2020 6

Defensive programming

Assertions about your code:
– precondition, postcondition, representation invariant, etc.

Check these statically via reasoning and tools

Check these dynamically via assertions
assert index >= 0;
assert items != null : "null item list argument"
assert size % 2 == 0 : "Bad size for " +

toString();

– throws AssertionError if condition is false
– includes descriptive messages

7CSE 331 Spring 2020

Enabling assertions

In Java, assertions can be enabled or disabled at runtime
(no recompile is required)

Command line:
java –ea runs code with assertions enabled
java runs code with assertions disabled (default)

Eclipse:
Select Run > Run Configurations… then add -ea to VM
arguments under (x)=arguments tab

Turn them off only in rare circumstances
(e.g., production code running on a client machine)

8CSE 331 Spring 2020

How not to use assertions

Don’t clutter the code with useless assertions

x = y + 1;
assert x == y + 1; // the compiler worked!

• Too many assertions can make the code hard to read
• Be judicious about where you include them. Good choices:

– preconditions & postconditions
– invariants of non-trivial loops
– representation invariants after mutations

9CSE 331 Spring 2020

How not to use assertions

Don’t perform side effects:

assert list.remove(x); // won’t happen if disabled

// better:
boolean found = list.remove(x);
assert found;

10CSE 331 Spring 2020

assert and checkRep()

CSE 331’s checkRep() is another dynamic check

Strategy: use assert in checkRep() to test and fail with
meaningful message if trouble found

– CSE 331 tests will check that assertions are enabled

Easy to forget to enable them in your own projects
– Google doesn’t use them for this reason

11CSE 331 Spring 2020

Expensive checkRep()tests

Detailed checks can be too slow in production
– especially if asymptotically slower than code being checked

But complex tests can be very helpful during testing & debugging
(let the computer find problems for you!)

Suggested strategy for checkRep:
– create a static, global “debug” or “debugLevel” variable
– run expensive tests when this is enabled
– turn it on during unit tests

• can use JUnit’s @Before for this

12CSE 331 Spring 2020

Square root

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
...

}

13CSE 331 Spring 2020

Square root with assertion

// requires: x >= 0
// returns: approximation to square root of x
public double sqrt(double x) {
assert x >= 0.0;
double result;
… compute result …
assert Math.abs(result*result – x) < .0001;
return result;

}

• These two assertions serve different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in
this lecture as examples.)

14CSE 331 Spring 2020

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2020 15

Square root, specified for all inputs

// throws: NegativeArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)

throws NegativeArgumentException {
if (x < 0)
throw new NegativeArgumentException();

…
}

• throws is part of a method signature: “it might happen”
– comma-separated list
– like @modifies, promises are in what is not listed

• throw is a statement that actually causes exception-throw
– immediate control transfer [like return but different]

16CSE 331 Spring 2020

Using try-catch to handle exceptions

public double sqrt(double x)
throws NegativeArgumentException

…

Client code:

try {
y = sqrt(…);
... other statements ...

} catch (NegativeArgumentException e) {
e.printStackTrace(); // or other actions

}

• Handled by nearest dynamically enclosing try/catch
– top-level default handler: print stack trace & crash

17CSE 331 Spring 2020

Catching with inheritance

try {
code…

} catch (FileNotFoundException fnfe) {
code to handle a file not found exception

} catch (IOException ioe) {
code to handle any other I/O exception

} catch (Exception e) {
code to handle any other exception

}

• A SocketException would match the second block
• An ArithmeticException would match the third block
• (Subsequent catch blocks need not be supertypes like this)

18CSE 331 Spring 2020

(Abridged) Exception Hierarchy

19CSE 331 Spring 2020

Java’s checked/unchecked distinction

Checked exceptions (style: for special cases / abnormal cases)
– callee must declare in signature (else type error)
– client must either catch or declare (else type error)

• even if you can prove it will never happen at run time, the
type system does not “believe you”

– guaranteed to be a matching enclosing catch at runtime

Unchecked exceptions (style: for never-expected)
– library has no need to declare
– client has no need to catch
– these are subclasses of:

• RuntimeException
• Error (rarely caught)

Throwable

Runtime
Exception

ErrorException

Checked
exceptions

20CSE 331 Spring 2020

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how
– how to throw, catch, and declare exceptions in Java
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2020 21

Two distinct uses of exceptions

• Errors that should be failures
– unexpected (ideally, should not happen at all)
– should be rare with high quality client and library
– can be the client’s fault or the library’s
– often unrecoverable

• Special cases (a.k.a. exceptional cases)
– expected, just not the common case
– possibly unpredictable or unpreventable by client

22CSE 331 Spring 2020

Handling exceptions

• Errors that should be failures
– usually can’t recover
– unchecked exceptions the better choice (avoids much work)
– if condition not checked, exception propagates up the stack

• top-level handler prints the stack trace

• Special cases
– take special action and continue computing
– should always check for this condition
– should handle locally by code that knows how to continue
– checked exceptions the better choice

23CSE 331 Spring 2020

Checked vs. unchecked

• No perfect answer to the question “should clients be forced to catch
(or declare they throw) this exception?”
– Java provided both options

• Advantages to checked exceptions:
– Static checking of callee: only declared exceptions are thrown
– Static checking of caller: exception is caught or declared

• Disadvantages:
– impedes implementations and overrides (can’t add exceptions)

• prevents truly giving no promises when @requires is false

– often in your way when prototyping
– have to catch or declare even if the exception is not possible

CSE 331 Spring 2020 24

Propagating an exception

// returns: x such that ax^2 + bx + c = 0
// throws: NegativeArgumentException if no real soln exists
double solveQuad(double a, double b, double c)

throws NegativeArgumentException {

// No need to catch exception thrown by sqrt
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

}

Aside: does “negative argument” make sense to the caller?

25CSE 331 Spring 2020

Why catch exceptions locally?

Problems:

1. Failure to catch exceptions often violates modularity
– call chain: A -> IntSet.insert -> IntList.insert
– IntList.insert throws some exception

• implementer of IntSet.insert knows how list is being used
• implementer of A may not even know that IntList exists

2. Possible that a method on the stack may think that it is handling an
exception raised by a different call

Alternative: catch it and throw again
– “chaining” or “translation”
– do this even if the exception is better handled up a level
– makes it clear to reader of code that it was not an omission

26CSE 331 Spring 2020

Exception translation
// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)

throws NotRealException {
try {
return (-b + sqrt(b*b - 4*a*c)) / (2*a);

} catch (NegativeArgumentException e) {
throw new NotRealException(); // “chaining”

}
}

class NotRealException extends Exception {
NotRealException() { super(); }
NotRealException(String message) { super(message); }
NotRealException(Throwable cause) { super(cause); }
NotRealException(String msg, Throwable c) { super(msg, c); }

}

27CSE 331 Spring 2020

Don’t ignore exceptions

Effective Java Tip: Don't ignore exceptions

Empty catch block is poor style

try {
readFile(filename);

} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened
– and exit if that’s appropriate for the application

} catch (IOException e) {
e.printStackTrace();
System.exit(1);

}

28CSE 331 Spring 2020

sometimes okay inside of
an exception handler

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– for things you believe will/should never happen

• Exceptions: what, how in Java
– how to throw, catch, and declare exceptions
– subtyping of exceptions
– checked vs. unchecked exceptions

• Exceptions: why in general
– for things you believe are bad and should rarely happen
– and many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2020 29

Informing the client of a problem
Special value:

– null for Map.get
– -1 for indexOf
– NaN for sqrt of negative number

Advantages:
– can be less verbose than try/catch machinery

Disadvantages:
– error-prone: callers forget to check, forget spec, etc.
– need “extra” result: doesn’t work if every result could be real

• example: if a map could store null keys
– has to be propagated manually one call at a time

General Java style advice: exceptions for exceptional conditions

30CSE 331 Spring 2020

Outline
• General concepts about dealing with errors and failures

• Assertions: what, why, how
– For things you believe will/should never happen

• Exceptions: what, how in Java
– How to throw, catch, and declare exceptions
– Subtyping of exceptions
– Checked vs. unchecked exceptions

• Exceptions: why in general
– For things you believe are bad and should rarely happen
– And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
CSE 331 Spring 2020 31

Exceptions: review

Use an assertion for internal consistency checks that should not fail
– when checking at runtime is possible

Use only a precondition when
– used in a context in which calls can be checked via reasoning
– but checking at runtime would be prohibitive

• e.g., requiring that a list be sorted

Use an exception when
– used in a dynamic / unpredictable context (client can’t predict)
– for exceptional cases only

Use a special value when
– it is a common case (not really exceptional)
– clients are likely (?) to remember to check for it

32CSE 331 Spring 2020

Exceptions: review, continued

Use checked exceptions most of the time
– static checking is helpful! (tools, inspection, & testing)

Avoid checked exceptions if there is probably no way to recover

Handle exceptions sooner rather than later

Good reference: Effective Java chapter
– a whole chapter: exception-handling design matters!

33CSE 331 Spring 2020

