
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Identity, equals, and hashCode

Overview

• Using the libraries reduces bugs in most cases
– take advantage of code already inspected & tested

• In Java, collection classes depend on equals and hashCode
– EJ 47: “Know and use the libraries”

• “every programmer should be familiar with the contents
of java.lang and java.util”

– e.g., List may not work properly if equals is wrong
– e.g., HashSet may not work properly of hashCode is wrong

56CSE 331 Spring 2020

hashCode

Another method in Object:

public int hashCode()

“Returns a hash code value for the object. This method is supported for
the benefit of hash tables such as those provided by
java.util.HashMap.”

Contract (again essential for correct overriding):
– Self-consistent: o.hashCode() is fixed (unless o is mutated)
– Consistent with equality:

a.equals(b) implies a.hashCode() == b.hashCode()

Want !a.equals(b) implies a.hashCode() != b.hashCode()
– but not actually in contract and (not true in most implementations)

CSE 331 Spring 2020 57

Think of it as a pre-filter

• If two objects are equal, they must have the same hash code
– contrapositive: if they have different hash codes, then

they must not be equal

• If objects have same hash code, they may or may not be equal
– “usually not” leads to better performance
– hashCode in Object tries to (but may not) give every object

a different hash code

• Hash codes are usually cheap[er] to compute, so check first if
you “usually expect not equal” – a pre-filter

CSE 331 Spring 2020 58

Asides

• Hash codes are used for hash tables
– common implementation of collection ADTs
– see CSE332
– libraries won’t work if your classes break relevant contracts

• Cheaper pre-filtering is a more general idea
– Example: Are two large video files the exact same video?

• Quick pre-filter: Are the files the same size?

CSE 331 Spring 2020 59

Recall: overriding equals
public class Duration {

@Override
public boolean equals(Object o) {

if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

CSE 331 Spring 2020 60

Doing it

• So: we have to override hashCode in Duration
– Must obey contract
– Aim for non-equals objects usually having different results

• Correct but expect poor performance:
public int hashCode() { return 1; }

• A bit better:
public int hashCode() { return min; }

• Better:
public int hashCode() { return min ^ sec; }

• Best
public int hashCode() { return 60*min+sec; }

CSE 331 Spring 2020 61

Correctness depends on equals

Suppose we change the spec for Duration’s equals:

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return min == d.min && sec/10 == d.sec/10;

}

Must update hashCode – why?

public int hashCode() {
return 6*min+sec/10;

}

CSE 331 Spring 2020 62

Summary

• Contract for hashCode requires only
– (self-)consistency
– consistent with equals

• Java’s hashCode must be consistent with equals
– if you override equals, you must override hashCode

• Good performance of hash tables requires that non-equal
objects usually have different hash codes
– does not need to be perfect

CSE 331 Spring 2020 63

Object.equals method

public class Object {
public boolean equals(Object o) {
return this == o;

}
…

}

• Implements reference equality
• Subclasses can override to implement a different equality
• But library includes a contract equals should satisfy

– Reference equality satisfies it
– So should any overriding implementation
– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding

64CSE 331 Spring 2020

equals specification
public boolean equals(Object obj) should be:

• reflexive: for any reference value x, x.equals(x) == true

• symmetric: for any reference values x and y,
x.equals(y) == y.equals(x)

• transitive: for any reference values x, y, and z, if x.equals(y)
and y.equals(z) are true, then x.equals(z) is true

• consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false (provided neither is mutated)

• For any non-null reference value x, x.equals(null) should
return false

65CSE 331 Spring 2020

Really fixed now
public class Duration {

@Override
public boolean equals(Object o) {

if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Correct and idiomatic Java
• Gets null case right (null instanceof C always false)
• Cast cannot fail

CSE 331 Spring 2020 66

Two subclasses

class CountedDuration extends Duration {
public static numCountedDurations = 0;
public CountedDuration(int min, int sec) {
super(min,sec);
++numCountedDurations;

}
}
class NanoDuration extends Duration {
private final int nano;
public NanoDuration(int min, int sec, int nano){
super(min,sec);
this.nano = nano;

}
public boolean equals(Object o) { … }
…

}
CSE 331 Spring 2020 67

CountedDuration is (probably) fine

• CountedDuration does not override equals
– inherits Duration.equals(Object)

• Will (implicitly) treat any CountedDuration like a Duration
when checking equals
– o instanceof Duration is true if o is CountedDuration

• Any combination of Duration and CountedDuration objects
can be compared
– equal if same contents in min and sec fields
– works because o instanceof Duration is true when o

is an instance of CountedDuration

CSE 331 Spring 2020 68

NanoDuration is (probably) not fine

• If we don’t override equals in NanoDuration, then objects
with different nano fields will be equal

• Using what we have learned:

@Override
public boolean equals(Object o) {
if (!(o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

• But we have violated the equals contract
– Hint: Compare a Duration and a NanoDuration

CSE 331 Spring 2020 69

The symmetry bug

public boolean equals(Object o) {
if (!(o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

This is not symmetric!
Duration d1 = new NanoDuration(5, 10, 15);

Duration d2 = new Duration(5, 10);

d1.equals(d2);

d2.equals(d1);

CSE 331 Spring 2020 70

// false

// true

Fixing symmetry
This version restores symmetry by using Duration’s equals if the
argument is a Duration (and not a NanoDuration)

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

// if o is a normal Duration, compare without nano
if (!(o instanceof NanoDuration))
return super.equals(o);

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

Alas, this still violates the equals contract
– Transitivity…

CSE 331 Spring 2020 71

The transitivity bug

CSE 331 Spring 2020 72

Duration d1 = new NanoDuration(1, 2, 3);

Duration d2 = new Duration(1, 2);

Duration d3 = new NanoDuration(1, 2, 4);

d1.equals(d2);

d2.equals(d3);

d1.equals(d3);

NanoDuration
min

sec

nano

1
2
3

Duration
min

sec

1
2

NanoDuration
min

sec

nano

1
2
4

// true
// true

// false!

No perfect solution

• Effective Java says not to (re)override equals like this
– (unless superclass is non-instantiable)
– generally good advice
– but there is one way to satisfy equals contract (see below)

• Two less-than-perfect approaches on next two slides:
1. Don’t make NanoDuration a subclass of Duration

– fact that equals should be different is a hint it’s not a subtype
2. Change Duration’s equals so only Duration objects

that are not (proper) subclasses of Duration are equal

CSE 331 Spring 2020 73

Option 1: avoid subclassing
Choose composition over subclassing (Effective Java)

– often good advice in general (we’ll discuss more later on)
– many programmers overuse subclassing

public class NanoDuration {
private final Duration duration;
private final int nano;
…

}

Solves some problems:
– clients can choose which type of equality to use

Introduces others:
– can’t use NanoDurations where Durations are expected

(since it is not a subtype)
CSE 331 Spring 2020 74

Option 2: the getClass trick
Check if o is a Duration and not a subtype:

@Overrides
public boolean equals(Object o) { // in Duration
if (o == null)
return false;

if (!o.getClass().equals(getClass()))
return false;

Duration d = (Duration) o;
return d.min == min && d.sec == sec;

}

But this breaks CountedDuration!
– subclasses do not “act like” instances of superclass because

behavior of equals changes with subclasses
– generally considered wrong to “break” subtyping like this

CSE 331 Spring 2020 75

Subclassing summary

• Subtypes should be useable wherever the type is used
– Liskov substitution principle

• Unresolvable tension between
– what we want for equality: treat subclasses differently
– what we want for subtyping: treat subclasses the same

• No perfect solution for all cases...
• Choose whether you want subtyping or not

– in former case, don’t override equals (make it final)
– in latter case, can still use composition instead

• this matches the advice in Effective Java and from us (later)
– almost always best to avoid getClass trick

CSE 331 Spring 2020 76

Equality, mutation, and time

If two objects are equal now, will they always be equal?
– in mathematics, “yes”
– in Java, “you choose”
– Object contract doesn't specify

For immutable objects:
– abstract value never changes
– equality should be forever (even if rep changes)

For mutable objects, either:
– use reference equality (never changes)
– not forever: mutation changes abstract value hence equals

Common source of bugs: mutating an object in a data structure
77CSE 331 Spring 2020

Examples
StringBuilder is mutable and sticks with reference-equality:
StringBuilder s1 = new StringBuilder("hello");

StringBuilder s2 = new StringBuilder("hello");

s1.equals(s1); // true

s1.equals(s2); // false

By contrast:

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT

Date d2 = new Date(0);

d1.equals(d2); // true
d2.setTime(1);
d1.equals(d2); // false

78CSE 331 Spring 2020

Behavioral and observational equivalence

Two objects are “behaviorally equivalent” if there is no sequence of
operations (excluding ==) that can distinguish them

Two objects are “observationally equivalent” if there is no sequence
of observer operations that can distinguish them

– excludes mutators and ==

79CSE 331 Spring 2020

Equality and mutation

Date class implements (only) observational equality

Can violate rep invariant of a Set by mutating after insertion

Set<Date> s = new HashSet<Date>();
Date d1 = new Date(0);
Date d2 = new Date(1000);
s.add(d1);
s.add(d2);
d2.setTime(0);
for (Date d : s) { // prints two of same date

System.out.println(d);
}

80CSE 331 Spring 2020

Pitfalls of observational equivalence

Have to make do with caveats in specs:
“Note: Great care must be exercised if mutable objects are used
as set elements. The behavior of a set is not specified if the value
of an object is changed in a manner that affects equals
comparisons while the object is an element in the set.”

Same problem applies to keys in maps

Same problem applies to mutations that change hash codes when
using HashSet or HashMap

Especially hard bugs to detect! (Be frightened!)
Easy to cause when modules don’t list everything they mutate

– why we need @modifies
81CSE 331 Spring 2020

Another container wrinkle: self-containment

equals and hashCode on containers are recursive:

class ArrayList<E> {
public int hashCode() {

int code = 1;

for (Object o : list)

code = 31*code + (o==null ? 0 : o.hashCode());
return code;

}

This causes an infinite loop:
List<Object> lst = new ArrayList<Object>();
lst.add(lst);
lst.hashCode();

82CSE 331 Spring 2020

Summary

• Different notions of equality:
– reference equality stronger than
– behavioral equality stronger than
– observational equality

• Java’s equals has an elaborate specification, but does not
require any one of the above notions
– requires consistency with hashCode
– concepts more general than Java

• Mutation and/or subtyping make things even murkier
– good reason not to overuse/misuse either

CSE 331 Spring 2020 83

