
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Identity, equals, and hashCode

Overview

• Using the libraries reduces bugs in most cases
– take advantage of code already inspected & tested

• In Java, collection classes depend on equals and hashCode
– EJ 47: “Know and use the libraries”

• “every programmer should be familiar with the contents
of java.lang and java.util”

– e.g., List may not work properly if equals is wrong
– e.g., HashSet may not work properly of hashCode is wrong

• You will need to use these for HW5 (pt 2) – HW7

• Same concepts exist in other languages
2CSE 331 Spring 2020

What might we want?

• Sometimes want equivalence relation bigger than ==
– Java takes OOP approach of letting classes override equals
– (can also be defined by a Comparator)

CSE 331 Spring 2020 3

Date d1 = new Date(12,27,2013);
Date d2 = new Date(12,27,2013);
Date d3 = d2;
// d1==d2 ?
// d2==d3 ?
// d1.equals(d2) ?
// d2.equals(d3) ?

month

day

year

12

27
2013

d1
d2
d3

month

day

year

12

27
2013

Expected properties of equality

Reflexive a.equals(a) == true
– Confusing if an object does not equal itself

Symmetric a.equals(b) iff b.equals(a)

– Confusing if order-of-arguments matters

Transitive a.equals(b) && b.equals(c) => a.equals(c)
– Confusing again to violate centuries of logical reasoning

A relation that is reflexive, transitive, and symmetric is
an equivalence relation

4CSE 331 Spring 2020

Reference equality

• Reference equality means an object is equal only to itself
– a == b only if a and b refer to (point to) the same object

• Reference equality is an equivalence relation
– Reflexive
– Symmetric
– Transitive

• Reference equality is the smallest equivalence relation on objects
– “Hardest” to show two objects are equal (must be same object)
– Cannot be smaller without violating reflexivity
– Sometimes but not always what we want

CSE 331 Spring 2020 5

Object.equals method

public class Object {
public boolean equals(Object o) {
return this == o;

}
…

}

• Implements reference equality
• Subclasses can override to implement a different equality
• But library includes a contract equals should satisfy

– Reference equality satisfies it
– So should any overriding implementation
– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding

6CSE 331 Spring 2020

equals specification
public boolean equals(Object obj) should be:

• reflexive: for any reference value x, x.equals(x) == true

• symmetric: for any reference values x and y,
x.equals(y) == y.equals(x)

• transitive: for any reference values x, y, and z, if x.equals(y)
and y.equals(z) are true, then x.equals(z) is true

• consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false (provided neither is mutated)

• For any non-null reference value x, x.equals(null) should
return false

7CSE 331 Spring 2020

Why all this?

• Remember the goal is a contract:
– weak enough to allow different useful overrides
– strong enough so clients can assume equal-ish things

• example: to implement a set
– this gives a good balance in practice

• In summary:
– equivalence relation on non-null objects
– consistency, but allow for mutation to change the answer
– asymmetric with null (other way raises exception)

• final detail: argument of null must return false
• weird but useful
• often see, e.g., “left”.equals(direction) – false for null

CSE 331 Spring 2020 8

An example

A class where we may want equals to mean equal contents

public class Duration {
private final int min; // RI: min>=0

private final int sec; // RI: 0<=sec<60

public Duration(int min, int sec) {
assert min>=0 && sec>=0 && sec<60;

this.min = min;

this.sec = sec;

}
}

– Should be able to implement what we want and satisfy the
equals contract…

CSE 331 Spring 2020 9

How about this?

public class Duration {

…

public boolean equals(Duration d) {
return this.min==d.min && this.sec==d.sec;

}

}

Two bugs:
1. Violates contract for null (not that interesting)

– Can add if(d==null) return false;
• But our fix for the other bug will make this unnecessary

2. Does not override Object’s equals method (more interesting)

CSE 331 Spring 2020 10

Overloading versus overriding

In Java:
– A class can have multiple methods with the same name and

different parameters (number or type)
– A method overrides a superclass method only if it has the

same name and exact same argument types

So Duration’s boolean equals(Duration d) does not
override Object’s boolean equals(Object d)

– Sometimes useful to avoid having to make up different
method names

– Sometimes confusing since the rules for what-method-gets-
called are complicated

CSE 331 Spring 2020 11

Example: no overriding

public class Duration {
public boolean equals(Duration d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

CSE 331 Spring 2020 12

// true
// false(!)

// true [using Object’s equals]

// false(!)
// false(!)

Example fixed (mostly)

public class Duration {
public boolean equals(Object d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

CSE 331 Spring 2020 13

// true
// true [overriding]
// true [overriding]
// true [overriding]
// true [overriding]

But wait!

This doesn’t actually compile:

public class Duration {

…

public boolean equals(Object o) {
return this.min==o.min && this.sec==o.sec;

}

}

CSE 331 Spring 2020 14

Really fixed now
public class Duration {

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Cast cannot fail
• We want equals to work on any pair of objects
• Gets null case right too (null instanceof C always false)
• So: rare use of cast that is correct and idiomatic

– This is what you should do (cf. Effective Java)
CSE 331 Spring 2020 15

Satisfies the contract
public class Duration {

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Reflexive: Yes
• Symmetric: Yes, even if o is not a Duration!

– (Assuming o’s equals method satisfies the contract)
• Transitive: Yes, similar reasoning to symmetric

CSE 331 Spring 2020 16

Even better

• Defensive Tip: use the @Override annotation when overriding

public class Duration {
@Override
public boolean equals(Object o) {

…
}

}

• Compiler warning if not actually an override
– Catches bug where argument is Duration or String or ...
– Alerts reader to overriding

• Concise, relevant, checked documentation

CSE 331 Spring 2020 17

CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Identity, equals, and hashCode

Overview

• Using the libraries reduces bugs in most cases
– take advantage of code already inspected & tested

• In Java, collection classes depend on equals and hashCode
– EJ 47: “Know and use the libraries”

• “every programmer should be familiar with the contents
of java.lang and java.util”

– e.g., List may not work properly if equals is wrong
– e.g., HashSet may not work properly of hashCode is wrong

• You will need to use these for HW5 (pt 2) – HW7

• Same concepts exist in other languages
19CSE 331 Spring 2020

What might we want?

• Sometimes want equivalence relation bigger than ==
– Java takes OOP approach of letting classes override equals
– (can also be defined by a Comparator)

CSE 331 Spring 2020 20

Date d1 = new Date(12,27,2013);
Date d2 = new Date(12,27,2013);
Date d3 = d2;
// d1==d2 ?
// d2==d3 ?
// d1.equals(d2) ?
// d2.equals(d3) ?

month

day

year

12

27
2013

d1
d2
d3

month

day

year

12

27
2013

Expected properties of equality

Reflexive a.equals(a) == true
– Confusing if an object does not equal itself

Symmetric a.equals(b) iff b.equals(a)

– Confusing if order-of-arguments matters

Transitive a.equals(b) && b.equals(c) => a.equals(c)
– Confusing again to violate centuries of logical reasoning

A relation that is reflexive, transitive, and symmetric is
an equivalence relation

21CSE 331 Spring 2020

Reference equality

• Reference equality means an object is equal only to itself
– a == b only if a and b refer to (point to) the same object

• Reference equality is an equivalence relation
– Reflexive
– Symmetric
– Transitive

• Reference equality is the smallest equivalence relation on objects
– “Hardest” to show two objects are equal (must be same object)
– Cannot be smaller without violating reflexivity
– Sometimes but not always what we want

CSE 331 Spring 2020 22

Object.equals method

public class Object {
public boolean equals(Object o) {
return this == o;

}
…

}

• Implements reference equality
• Subclasses can override to implement a different equality
• But library includes a contract equals should satisfy

– Reference equality satisfies it
– So should any overriding implementation
– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding

23CSE 331 Spring 2020

equals specification
public boolean equals(Object obj) should be:

• reflexive: for any reference value x, x.equals(x) == true

• symmetric: for any reference values x and y,
x.equals(y) == y.equals(x)

• transitive: for any reference values x, y, and z, if x.equals(y)
and y.equals(z) are true, then x.equals(z) is true

• consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false (provided neither is mutated)

• For any non-null reference value x, x.equals(null) should
return false

24CSE 331 Spring 2020

Why all this?

• Remember the goal is a contract:
– weak enough to allow different useful overrides
– strong enough so clients can assume equal-ish things

• example: to implement a set
– this gives a good balance in practice

• In summary:
– equivalence relation on non-null objects
– consistency, but allow for mutation to change the answer
– asymmetric with null (other way raises exception)

• final detail: argument of null must return false
• weird but useful
• often see, e.g., “left”.equals(direction) – false for null

CSE 331 Spring 2020 25

An example

A class where we may want equals to mean equal contents

public class Duration {
private final int min; // RI: min>=0

private final int sec; // RI: 0<=sec<60

public Duration(int min, int sec) {
assert min>=0 && sec>=0 && sec<60;

this.min = min;

this.sec = sec;

}
}

– Should be able to implement what we want and satisfy the
equals contract…

CSE 331 Spring 2020 26

How about this?

public class Duration {

…

public boolean equals(Duration d) {
return this.min==d.min && this.sec==d.sec;

}

}

Two bugs:
1. Violates contract for null (not that interesting)

– Can add if(d==null) return false;
• But our fix for the other bug will make this unnecessary

2. Does not override Object’s equals method (more interesting)

CSE 331 Spring 2020 27

Overloading versus overriding

In Java:
– A class can have multiple methods with the same name and

different parameters (number or type)
– A method overrides a superclass method only if it has the

same name and exact same argument types

So Duration’s boolean equals(Duration d) does not
override Object’s boolean equals(Object d)

– Sometimes useful to avoid having to make up different
method names

– Sometimes confusing since the rules for what-method-gets-
called are complicated

CSE 331 Spring 2020 28

Example: no overriding

public class Duration {
public boolean equals(Duration d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

CSE 331 Spring 2020 29

// true
// false(!)

// true [using Object’s equals]

// false(!)
// false(!)

Example fixed (mostly)

public class Duration {
public boolean equals(Object d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

CSE 331 Spring 2020 30

// true
// true [overriding]
// true [overriding]
// true [overriding]
// true [overriding]

A little more generally

• Won’t go through all the overloading-resolution rules here

• In short, Java:
– Uses (compile-time) types to pick the signature (at compile-time)

• In example: if receiver or argument has compile-time type
Object, then only signature taking an Object is “known to
work,” so it is picked

– At run-time, uses dynamic dispatch to choose what
implementation with that signature runs

• In un-fixed example: the inherited method is the only one with
the take-an-Object signature

• In fixed example: Overriding matters whenever the run-time
class of the receiver is Duration

CSE 331 Spring 2020 31

DEMO

CSE 331 Spring 2020 32

But wait!

This doesn’t actually compile:

public class Duration {

…

public boolean equals(Object o) {
return this.min==o.min && this.sec==o.sec;

}

}

CSE 331 Spring 2020 33

Really fixed now
public class Duration {

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Cast cannot fail
• We want equals to work on any pair of objects
• Gets null case right too (null instanceof C always false)
• So: rare use of cast that is correct and idiomatic

– This is what you should do (cf. Effective Java)
CSE 331 Spring 2020 34

Satisfies the contract
public class Duration {

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Reflexive: Yes
• Symmetric: Yes, even if o is not a Duration!

– (Assuming o’s equals method satisfies the contract)
• Transitive: Yes, similar reasoning to symmetric

CSE 331 Spring 2020 35

Even better

• Defensive Tip: use the @Override annotation when overriding

public class Duration {
@Override
public boolean equals(Object o) {

…
}

}

• Compiler warning if not actually an override
– Catches bug where argument is Duration or String or ...
– Alerts reader to overriding

• Concise, relevant, checked documentation

CSE 331 Spring 2020 36

CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Identity, equals, and hashCode

Overriding and Javadoc

• Note that Javadoc will copy javadoc from the superclass to the
subclass for you
– thus, it is not necessary to write javadoc if it is identical
– adding @Override makes this clear to the reader

• One special case: spec.* are not copied at present (I think)
– If you want to see them, you can add, e.g., :

@spec.requires {@inheritDoc}

to copy that part from the parent

CSE 331 Spring 2020 38

Two subclasses

class CountedDuration extends Duration {
public static numCountedDurations = 0;
public CountedDuration(int min, int sec) {
super(min,sec);
++numCountedDurations;

}
}
class NanoDuration extends Duration {
private final int nano;
public NanoDuration(int min, int sec, int nano){
super(min,sec);
this.nano = nano;

}
public boolean equals(Object o) { … }
…

}
CSE 331 Spring 2020 39

CountedDuration is (probably) fine

• CountedDuration does not override equals
– inherits Duration.equals(Object)

• Will (implicitly) treat any CountedDuration like a Duration
when checking equals
– o instanceof Duration is true if o is CountedDuration

• Any combination of Duration and CountedDuration objects
can be compared
– equal if same contents in min and sec fields
– works because o instanceof Duration is true when o

is an instance of CountedDuration

CSE 331 Spring 2020 40

NanoDuration is (probably) not fine

• If we don’t override equals in NanoDuration, then objects
with different nano fields will be equal

• Using what we have learned:

@Override
public boolean equals(Object o) {
if (!(o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

• But we have violated the equals contract
– Hint: Compare a Duration and a NanoDuration

CSE 331 Spring 2020 41

The symmetry bug

public boolean equals(Object o) {
if (!(o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

This is not symmetric!
Duration d1 = new NanoDuration(5, 10, 15);

Duration d2 = new Duration(5, 10);

d1.equals(d2);

d2.equals(d1);

CSE 331 Spring 2020 42

// false

// true

Fixing symmetry
This version restores symmetry by using Duration’s equals if the
argument is a Duration (and not a NanoDuration)

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

// if o is a normal Duration, compare without nano
if (!(o instanceof NanoDuration))
return super.equals(o);

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

Alas, this still violates the equals contract
– Transitivity…

CSE 331 Spring 2020 43

The transitivity bug

CSE 331 Spring 2020 44

Duration d1 = new NanoDuration(1, 2, 3);

Duration d2 = new Duration(1, 2);

Duration d3 = new NanoDuration(1, 2, 4);

d1.equals(d2);

d2.equals(d3);

d1.equals(d3);

NanoDuration
min

sec

nano

1
2
3

Duration
min

sec

1
2

NanoDuration
min

sec

nano

1
2
4

// true
// true

// false!

No perfect solution

• Effective Java says not to (re)override equals like this
– (unless superclass is non-instantiable)
– generally good advice
– but there is one way to satisfy equals contract (see below)

• Two far-from-perfect approaches on next two slides:
1. Don’t make NanoDuration a subclass of Duration

– fact that equals should be different is a hint it’s not a subtype
2. Change Duration’s equals so only Duration objects

that are not (proper) subclasses of Duration are equal

CSE 331 Spring 2020 45

Option 1: avoid subclassing
Choose composition over subclassing (EJ Item 81)

– often good advice in general (we’ll discuss more later on)
– many programmers overuse subclassing

public class NanoDuration {
private final Duration duration;
private final int nano;
…

}

Solves some problems:
– clients can choose which type of equality to use

Introduces others:
– can’t use NanoDurations where Durations are expected

(since it is not a subtype)
CSE 331 Spring 2020 46

Option 2: the getClass trick
Check if o is a Duration and not a subtype:

@Overrides
public boolean equals(Object o) { // in Duration
if (o == null)
return false;

if (!o.getClass().equals(getClass()))
return false;

Duration d = (Duration) o;
return d.min == min && d.sec == sec;

}

But this breaks CountedDuration!
– subclasses do not “act like” instances of superclass because

behavior of equals changes with subclasses
– generally considered wrong to “break” subtyping like this

CSE 331 Spring 2020 47

Subclassing summary

• Subtypes should be useable wherever the type is used
– Liskov substitution principle

• Unresolvable tension between
– what we want for equality: treat subclasses differently
– what we want for subtyping: treat subclasses the same

• No perfect solution for all cases...
• Choose whether you want subtyping or not

– in former case, don’t override equals (make it final)
– in latter case, can still use composition instead

• this matches the advice in Effective Java and from us (later)
– almost always best to avoid getClass trick

CSE 331 Spring 2020 48

Equality, mutation, and time

If two objects are equal now, will they always be equal?
– in mathematics, “yes”
– in Java, “you choose”
– Object contract doesn't specify

For immutable objects:
– abstract value never changes
– equality should be forever (even if rep changes)

For mutable objects, either:
– use reference equality (never changes)
– not forever: mutation changes abstract value hence equals

Common source of bugs: mutating an object in a data structure
49CSE 331 Spring 2020

Examples
StringBuilder is mutable and sticks with reference-equality:
StringBuilder s1 = new StringBuilder("hello");

StringBuilder s2 = new StringBuilder("hello");

s1.equals(s1); // true

s1.equals(s2); // false

By contrast:

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT

Date d2 = new Date(0);

d1.equals(d2); // true
d2.setTime(1);
d1.equals(d2); // false

50CSE 331 Spring 2020

Behavioral and observational equivalence

Two objects are “behaviorally equivalent” if there is no sequence of
operations (excluding ==) that can distinguish them

Two objects are “observationally equivalent” if there is no sequence
of observer operations that can distinguish them

– excludes mutators and ==

51CSE 331 Spring 2020

Equality and mutation

Date class implements (only) observational equality

Can violate rep invariant of a Set by mutating after insertion

Set<Date> s = new HashSet<Date>();
Date d1 = new Date(0);
Date d2 = new Date(1000);
s.add(d1);
s.add(d2);
d2.setTime(0);
for (Date d : s) { // prints two of same date

System.out.println(d);
}

52CSE 331 Spring 2020

Pitfalls of observational equivalence

Have to make do with caveats in specs:
“Note: Great care must be exercised if mutable objects are used
as set elements. The behavior of a set is not specified if the value
of an object is changed in a manner that affects equals
comparisons while the object is an element in the set.”

Same problem applies to keys in maps

Same problem applies to mutations that change hash codes when
using HashSet or HashMap

Especially hard bugs to detect! (Be frightened!)
Easy to cause when modules don’t list everything they mutate

– why we need @modifies
53CSE 331 Spring 2020

Another container wrinkle: self-containment

equals and hashCode on containers are recursive:

class ArrayList<E> {
public int hashCode() {

int code = 1;

for (Object o : list)

code = 31*code + (o==null ? 0 : o.hashCode());
return code;

}

This causes an infinite loop:
List<Object> lst = new ArrayList<Object>();
lst.add(lst);
lst.hashCode();

54CSE 331 Spring 2020

Summary

• Different notions of equality:
– reference equality stronger than
– behavioral equality stronger than
– observational equality

• Java’s equals has an elaborate specification, but does not
require any one of the above notions
– requires consistency with hashCode
– concepts more general than Java

• Mutation and/or subtyping make things even murkier
– good reason not to overuse/misuse either

CSE 331 Spring 2020 55

hashCode

Another method in Object:

public int hashCode()

“Returns a hash code value for the object. This method is supported for
the benefit of hash tables such as those provided by
java.util.HashMap.”

Contract (again essential for correct overriding):
– Self-consistent: o.hashCode() is fixed (unless o is mutated)
– Consistent with equality:

a.equals(b) implies a.hashCode() == b.hashCode()

Want !a.equals(b) implies a.hashCode() != b.hashCode()
– but not actually in contract and (not true in most implementations)

CSE 331 Spring 2020 56

Think of it as a pre-filter

• If two objects are equal, they must have the same hash code
– up to implementers of equals and hashCode to satisfy this
– if you override equals, you must override hashCode

• If objects have same hash code, they may or may not be equal
– “usually not” leads to better performance
– hashCode in Object tries to (but may not) give every object

a different hash code

• Hash codes are usually cheap[er] to compute, so check first if
you “usually expect not equal” – a pre-filter

CSE 331 Spring 2020 57

Asides

• Hash codes are used for hash tables
– common implementation of collection ADTs
– see CSE332
– libraries won’t work if your classes break relevant contracts

• Cheaper pre-filtering is a more general idea
– Example: Are two large video files the exact same video?

• Quick pre-filter: Are the files the same size?

CSE 331 Spring 2020 58

Doing it

• So: we have to override hashCode in Duration
– Must obey contract
– Aim for non-equals objects usually having different results

• Correct but expect poor performance:
public int hashCode() { return 1; }

• A bit better:
public int hashCode() { return min; }

• Better:
public int hashCode() { return min ^ sec; }

• Best
public int hashCode() { return 60*min+sec; }

CSE 331 Spring 2020 59

Correctness depends on equals

Suppose we change the spec for Duration’s equals:

public boolean equals(Object o) {
if (!(o instanceof Duration))
return false;

Duration d = (Duration) o;
return min == d.min && sec/10 == d.sec/10;

}

Must update hashCode – why?

public int hashCode() {
return 6*min+sec/10;

}

CSE 331 Spring 2020 60

